分析 (1)根据M,N分别是AC,BC的中点,找到线段之间的关系,即可求出结果;
(2)根据M,N分别是AC,BC的中点,找到线段之间的关系,即可得出结论;
(3)根据M,N分别是AC,BC的中点,找到线段之间的关系,即可得出结论;
(4)分析上面结论,即可得出“MN的长度与C点的位置无关,只与AB的长度有关”这一结论.
解答 解:(1)MN=MC+CN=$\frac{1}{2}$AC+$\frac{1}{2}$CB=$\frac{1}{2}$×10+$\frac{1}{2}$×8=5+4=9cm.
答:线段MN的长为9cm.
(2)MN=MC+CN=$\frac{1}{2}$AC+$\frac{1}{2}$CB=$\frac{1}{2}$(AC+CB)=$\frac{a}{2}$cm.
(3)如图,![]()
MN=AC-AM-NC=AC-$\frac{1}{2}$AC-$\frac{1}{2}$BC=$\frac{1}{2}$(AC-BC)=$\frac{a}{2}$cm.
(4)当C点在AB线段上时,AC+BC=AB,
当C点在AB延长线上时,AC-BC=AB,
故找到规律,MN的长度与C点的位置无关,只与AB的长度有关.
点评 本题考查了两点间的距离,解题的关键是根据M,N分别是AC,BC的中点,找到线段之间的关系.
科目:初中数学 来源: 题型:选择题
| A. | 2 | B. | 2.5 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com