【题目】已知过原点O的两直线与圆心为M(0,4),半径为2的圆相切,切点分别为P、Q,PQ交y轴于点K,抛物线经过P、Q两点,顶点为N(0,6),且与x轴交于A、B两点.
(1)求点P的坐标;
(2)求抛物线解析式;
(3)在直线y=nx+m中,当n=0,m≠0时,y=m是平行于x轴的直线,设直线y=m与抛物线相交于点C、D,当该直线与⊙M相切时,求点A、B、C、D围成的多边形的面积(结果保留根号).
【答案】
(1)解:如图1,
∵⊙M与OP相切于点P,
∴MP⊥OP,即∠MPO=90°.
∵点M(0,4)即OM=4,MP=2,
∴OP=2 .
∵⊙M与OP相切于点P,⊙M与OQ相切于点Q,
∴OQ=OP,∠POK=∠QOK.
∴OK⊥PQ,QK=PK.
∴PK= = = .
∴OK= =3.
∴点P的坐标为( ,3)
(2)解:如图2,
设顶点为(0,6)的抛物线的解析式为y=ax2+6,
∵点P( ,3)在抛物线y=ax2+6上,
∴3a+6=3.
解得:a=﹣1.
则该抛物线的解析式为y=﹣x2+6
(3)解:当直线y=m与⊙M相切时,
则有 =2.
解得;m1=2,m2=6.
①m=2时,如图3,
则有OH=2.
当y=2时,解方程﹣x2+6=2得:x=±2,
则点C(2,2),D(﹣2,2),CD=4.
同理可得:AB=2 .
则S梯形ABCD= (DC+AB)OH= (4+2 )×2=4+2 .
②m=6时,如图4,
此时点C、点D与点N重合.
S△ABC= ABOC= ×2 ×6=6 .
综上所述:点A、B、C、D围成的多边形的面积为4+2 或6
【解析】(1)由切线的性质可得∠MPO=90°,根据勾股定理可求出PO,然后由面积法可求出PK,然后运用勾股定理可求出OK,就可得到点P的坐标.(2)可设顶点为(0,6)的抛物线的解析式为y=ax2+6,然后将点P的坐标代入就可求出抛物线的解析式.(3)直线y=m与⊙M相切有两种可能,只需对这两种情况分别讨论就可求出对应多边形的面积.
【考点精析】通过灵活运用切线长定理和等腰三角形的性质,掌握从圆外一点引圆的两条切线,它们的切线长相等圆心和这一点的连线平分两条切线的夹角;等腰三角形的两个底角相等(简称:等边对等角)即可以解答此题.
科目:初中数学 来源: 题型:
【题目】为了解某区九年级学生身体素质情况,该区从全区九年级学生中随机抽取了部分学生进行了一次体育考试科目测试(把测试结果分为四个等级:A级:优秀:B级:良好;C级:及格;D级:不及格),并将测试结果绘成了如图两幅不完整的统计图.请根据统计图中的信息解答下列问题:
(1)本次抽样测试的学生是;
(2)求图1中∠α的度数是°,
(3)把图2条形统计图补充完整;
(4)该区九年级有学生3500名,如果全部参加这次体育科目测试,请估计不及格的人数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 已知△ABC中,∠A=25°,∠B=40°.
(1)求作:⊙O,使得⊙O经过A、C两点,且圆心O落在AB边上.(要求尺规作图,保留作图痕迹,不必写作法)
(2)求证:BC是(1)中所作⊙O的切线.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.
(1)求证:△AED≌△CFB;
(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点E、F在四边形ABCD的对角线延长线上,AE=CF,DE∥BF,∠1=∠2.
(1)求证:△AED≌△CFB;
(2)若AD⊥CD,四边形ABCD是什么特殊四边形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】关于体育选考项目统计图
项目 | 频数 | 频率 |
A | 80 | b |
B | c | 0.3 |
C | 20 | 0.1 |
D | 40 | 0.2 |
合计 | a | 1 |
(1)求出表中a,b,c的值,并将条形统计图补充完整. 表中a= , b= , c= .
(2)如果有3万人参加体育选考,会有多少人选择篮球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(﹣4, ),B(﹣1,2)是一次函数y=kx+b与反比例函数y= (m≠0,x<0)图象的两个交点,AC⊥x轴于C,BD⊥y轴于D.
(1)根据图象直接回答:在第二象限内,当x取何值时,一次函数大于反比例函数的值?
(2)求一次函数解析式及m的值;
(3)P是线段AB上的一点,连接PC,PD,若△PCA和△PDB面积相等,求点P坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com