【题目】如图1,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和△BCE,CA=CD,CB=CE,∠ACD=∠BCE=30°,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接CP.
(1)线段AE与DB的数量关系为 ;请直接写出∠APD= ;
(2)将△BCE绕点C旋转到如图2所示的位置,其他条件不变,探究线段AE与DB的数量关系,并说明理由;求出此时∠APD的度数;
(3)在(2)的条件下求证:∠APC=∠BPC.
【答案】(1)AE=BD,30°;(2)结论:AE=BD,∠APD=30°.理由见解析;(3)见解析.
【解析】
(1)只要证明△ACE≌△DCB,即可解决问题;
(2)只要证明△ACE≌△DCB,即可解决问题;
(3)如图2-1中,分别过C作CH⊥AE,垂足为H,过点C作CG⊥BD,垂足为G,利用面积法证明CG=CH,再利用角平分线的判定定理证明∠DPC=∠EPC即可解决问题;
(1)解:如图1中,
∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
∴△ACE≌△DCB.
∴AE=BD,∴CAE=∠CDB,
∵∠AMC=∠DMP,
∴∠APD=∠ACD=30°,
故答案为AE=BD,30°
(2)如图2中,结论:AE=BD,∠APD=30°.
理由:∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE,
∴∠ACE=∠DCB,
又∵CA=CD,CE=CB,
∴△ACE≌△DCB.
∴AE=BD,∴CAE=∠CDB,
∵∠AMP=∠DMC,
∴∠APD=∠ACD=30°.
(3)如图2﹣1中,分别过C作CH⊥AE,垂足为H,过点C作CG⊥BD,垂足为G,
∵△ACE≌△DCB.
∴AE=BD,
∵S△ACE=S△DCB
∴CH=CG,
∴∠DPC=∠EPC
∵∠APD=∠BPE,
∴∠APC=∠BPC.
科目:初中数学 来源: 题型:
【题目】为了缅怀先烈.继承遗志,某中学初二年级同学于4月初进行“清明雁栖湖,忆先烈功垂不朽”的定向越野活动每个小组需要在点出发,跑步到点打卡(每小组打卡时间为1分钟),然后跑步到点,……最后到达终点(假设点,点,点在一条直线上,且在行进过程中,每个小组跑步速度是不变的),“文艺组”最先出发.过了一段时间后,“方程组”开始出发,两个小组恰好同时到达点.若“方程组”出发的时间为(单位:分钟),在点与点之间的行进过程中,“文艺组”和“方程组”之间的距离为(单位:米),它们的函数图像如下图:则下面判断不正确的是( )
A.当时,“文艺组”恰好到达点;
B.“文艺组”的速度为150米/分钟,“方程组”的速度为200米/分钟他们从点出发的时间间隔为2分钟
C.图中点表示“方程组”在点打卡结束,开始向点出发;
D.出发点到打卡点的距离是600米,打卡点到点的距离是800米
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=x2﹣2mx+4m﹣8,
(1)当x≤2时,函数值y随x的增大而减小,求m的取值范围.
(2)以抛物线y=x2﹣2mx+4m﹣8的顶点A为一个顶点作该抛物线的内接正三角形AMN(M,N两点在拋物线上),请问:△AMN的面积是与m无关的定值吗?若是,请求出这个定值;若不是,请说明理由.
(3)若抛物线y=x2﹣2mx+4m﹣8与x轴交点的横坐标均为整数,求整数m的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算题
(1)(3ab)2(﹣ab3)
(2)20182﹣2016×2020(利用乘法公式计算)
(3)﹣12019+(﹣)﹣2+﹣(π﹣3.14)0
(4)[2(x+2y)2﹣(x+y)(4x﹣y)﹣9y2]÷(﹣2x),其中x=﹣2,y=.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=12,AC=BC=10,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为D,点C的对应点为E,连接BD,BE.
(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长.
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人进行米比赛,在比赛过程中,两人所跑的路程(米)与所用的时间(分)的函数关系如图所示,则下列说法:①甲先到达终点;②完成比赛,乙比甲少用秒;③出发分钟后乙比甲速度快;④分时甲、乙相距米.其中错误的个数是( )
A.个B.个C.个D.个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在直角坐标平面内,抛物线y=x2+bx+c经过点A(2,0)、B(0,6).
(1)求抛物线的表达式;
(2)抛物线向下平移几个单位后经过点(4,0)?请通过计算说明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知数轴上点A表示的数为8,B是数轴上位于点A左侧一点,且AB=22,动点P从A点出发,以每秒5个单位长度的速度沿数轴向左匀速运动,设运动时间为t(t>0)秒.
(1)出数轴上点B表示的数 ;点P表示的数 (用含t的代数式表示)
(2)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向右匀速运动,若点P、Q同时出发,问多少秒时P、Q之间的距离恰好等于2?
(3)动点Q从点B出发,以每秒3个单位长度的速度沿数轴向左匀速运动,若点P、Q同时出发,问点P运动多少秒时追上点Q?
(4)若M为AP的中点,N为BP的中点,在点P运动的过程中,线段MN的长度是否发生变化?若变化,请说明理由,若不变,请你画出图形,并求出线段MN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二元一次方程组的解 x,y 的值是一个等腰三角形两边的长,且这个等腰三角形的周长为 5,求腰的长.(注:等腰三角形中相等的两条边叫做等腰三角形的腰)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com