精英家教网 > 初中数学 > 题目详情
如图,在AB、AC上各取一点E、D,使AE=AD,连接BD、CE相交于点O,再连接AO、BC,若∠1=∠2,则图中全等三角形共有(  )
分析:认真观察图形,确定已知条件在图形上的位置,结合全等三角形的判定方法,由易到难,仔细寻找.
解答:解:①在△AEO与△ADO中,
AE=AD
∠1=∠2
OA=OA(公共边)

∴△AEO≌△ADO(SAS);

②∵△AEO≌△ADO,
∴OE=OD,∠AEO=∠ADO,
∴∠BEO=∠CDO.
在△BEO与△CDO中,
∠BEO=∠CDO
OE=OD
∠BOE=∠COD(对顶角相等)

∴△BEO≌△CDO(ASA);

③∵△BEO≌△CDO,
∴BE=CD,BO=CO,OE=OD,
∴CE=BD.
在△BEC与△CDB中,
BE=CD
∠BEC=∠CDB
CE=BD

∴△BEC≌△CDB(SAS);

④在△AEC与△ADB中,
AE=AD
∠AEC=∠ADB
CE=BD

则△AEC≌△ADB(SAS);

⑤∵△AEC≌△ADB,
∴AB=AC.
在△AOB与△AOC中,
AB=AC
OB=OC
OA=OA

∴△AOB≌△AOC.
综上所述,图中全等三角形共5对.
故选A.
点评:本题考查三角形全等的判定方法和全等三角形的性质.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

34、已知:如图,在AB、AC上各取一点,E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源: 题型:

16、如图,在AB、AC上各取一点D、E,使得AE=AD,连接CD、BE相交于点O,再连接AO.若∠CAO=∠BAO,则图中全等三角形共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图,在AB、AC上各取一点E、D,使AE=AD,连接BD,CE,BD与CE交于O,连接AO,∠1=∠2,
求证:∠B=∠C.

查看答案和解析>>

科目:初中数学 来源:辽宁省中考真题 题型:解答题

已知△ABC 是等边三角形.  
(1 )将△ABC 绕点A 逆时针旋转角(0 °<<180 °),得到△ADE ,BD 和EC 所在直线相交于点O.       
 ①如图   ,当   =20 °时,△ABD 与△ACE 是否全等?(    )(填“是”或“否”),∠BOE=(    )度;
②当△ABC旋转到如图  所在位置时,求∠BOE的度数;  
(2)如图  ,在AB和AC上分别截取点B′和C′,使AB=   AB′,AC=   AC′,连接B′C′,将△AB′C′绕点A逆时针旋转角  (0°<   <180°),得到△ADE
(3)BD和EC所在直线相交于点O,请利用图  探索∠BOE的度数,直接写出结果,不必说明理由.

查看答案和解析>>

同步练习册答案