精英家教网 > 初中数学 > 题目详情
4.如果一个三角形能被一条线段分割成两个等腰三角形,那么称这条线段为这个三角形的特异线,称这个三角形为特异三角形.

(1)如图1,△ABC中,∠B=2∠C,线段AC的垂直平分线交AC于点D,交BC于点E.求证:AE是△ABC的一条特异线;
(2)如图2,若△ABC是特异三角形,∠A=30°,∠B为钝角,求出所有可能的∠B的度数.

分析 (1)只要证明△ABE,△AEC是等腰三角形即可.
(2)如图2中,当BD是特异线时,分三种情形讨论,如图3中,当AD是特异线时,AB=BD,AD=DC根据等腰三角形性质即可解决问题,当CD为特异线时,不合题意.

解答 (1)证明:如图1中,

∵DE是线段AC的垂直平分线,
∴EA=EC,即△EAC是等腰三角形,
∴∠EAC=∠C,
∴∠AEB=∠EAC+∠C=2∠C,
∵∠B=2∠C,
∴∠AEB=∠B,即△EAB是等腰三角形,
∴AE是△ABC是一条特异线.
(2)解:如图2中,

当BD是特异线时,如果AB=BD=DC,则∠ABC=∠ABD+∠DBC=120°+15°=135°,
如果AD=AB,DB=DC,则∠ABC=∠ABD+∠DBC=75°+37.5°=112.5°,
如果AD=DB,DC=CB,则ABC=∠ABD+∠DBC=30°+60°=90°(不合题意舍弃).
如图3中,当AD是特异线时,AB=BD,AD=DC,则∠ABC=180°-20°-20°=140°

当CD为特异线时,不合题意.
∴符合条件的∠ABC的度数为135°或112.5°或140°.

点评 本题考查了等腰三角形的判定和性质、三角形内角和定理等知识,解题的关键是理解题意,学会分类讨论,学会画出图形,借助于图形解决问题,学会利用方程去思考问题,属于中考创新题目.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.计算:
(1)12-(-18)+(-7)
(2)-22+(-2)2+23+(-2)3
(3)-1$\frac{2}{3}$×(1-$\frac{1}{3}$)÷$\frac{1}{3}$
(4)54×($\frac{5}{6}$-$\frac{4}{9}$+$\frac{1}{3}$).

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.化简:$\sqrt{0.4}$×$\sqrt{3.6}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

7.当整数x为±1时,代数式$\frac{{x}^{2}+2x-1}{x}$的值为整数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.如图,在等边△ABC中,点E、F分别在AB、BC边上,且AE=BF=$\frac{1}{3}$AB,连接AF、CE交于点G,将△ABC沿AC翻折得到△ACD,连接DG,且DG=6$\sqrt{7}$,过点D作∠CDG的角平分线交CB于M,则四边形DGFM的面积是77$\sqrt{3}$-$\frac{49\sqrt{21}}{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图:∠B=∠C=90°,E是BC上一点,AE平分∠BAD,∠AEB=40°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.下列各式去括号正确的是(  )
A.-(2a-b+c)=-2a-b+cB.-(x-y)+(xy-1)=-x+y+xy-1
C.-(3b-2c)=-3b-2cD.-[x-(5z+4)]=-x-5z+4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,在平面直角坐标系中,矩形ABCD的顶点A与坐标原点O重合,B(4,0),D(0,3),点E从点A出发,沿射线AB移动,以CE为直径作⊙M,点F为⊙M与射线DB的公共点,连接EF、CF,过点E作EG⊥EF,EG与⊙M相交于点G,连接CG.
(1)试说明四边形EFCG是矩形;
(2)求tan∠CEG的值;
(3)当⊙M与射线DB相切时,点E停止移动,在点E移动的过程中:
①点M运动的路径长$\frac{25}{8}$;点G运动的路径长$\frac{15}{4}$;
②矩形EFCG的面积最小值是$\frac{108}{25}$;
③当△BCG成为等腰三角形时,直接写出点G坐标($\frac{41}{8}$,$\frac{3}{2}$).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知函数y1=k1x+b1和y2=k2x+b2图象如图所示,直线y1与直线y2交于A点(0,3).与x轴的交点坐标为B(1,0)、C(3,0).
(1)求函数y1和y2的函数关系式;
(2)求△ABC的面积;
(3)求△AOB中AB边上的高;
(4)若点D在x轴上,且满足△ACD是等腰三角形,直接写出D点坐标.

查看答案和解析>>

同步练习册答案