【题目】如图,反比例函数y=与一次函数y=ax+b的图象交于点A(2,2),B(,n).
(1)求这两个函数的解析式;
(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求m的值.
【答案】(1)y=-4x+10(2)m=2或m=18.
【解析】试题分析:(1)由点A在反比例函数的图象上,结合反比例函数图象上的点的坐标特征即可得出反比例函数的解析式;由点B的横坐标以及反比例函数的解析式即可得出点B的坐标,再由A、B点的坐标利用待定系数法即可求出一次函数得解析式;(2)结合(1)中得结论找出平移后的直线的解析式,将其代入反比例函数解析式中,整理得出关于x的二次方程,令其根的判别式△=0,即可得出关于m的一元二次方程,解方程即可得出结论.
试题解析:(1)∵A(2,2)在反比例函数y=的图象上,
∴k=4.
∴反比例函数的解析式为 y=.
又∵点B(,n)在反比例函数y=的图象上,
∴,解得:n=8,
即点B的坐标为(,8).
由A(2,2)、B(,8)在一次函数y=ax+b的图象上,
得: ,
解得: ,
∴一次函数的解析式为y=﹣4x+10.
(2)将直线y=﹣4x+10向下平移m个单位得直线的解析式为y=﹣4x+10﹣m,
∵直线y=﹣4x+10﹣m与双曲线y=有且只有一个交点,
令,得4x2+(m﹣10)x+4=0,
∴△=(m﹣10)2﹣64=0,
解得:m=2或m=18.
科目:初中数学 来源: 题型:
【题目】已知,四边形ABCD中,对角线AC、BD相交于O,给出下列四个条件①AB∥CD,②OA=OC,③AD=BC,④∠A=∠C,任取两个条件,可得出四边形ABCD是平行四边形这一结论的情况有( )
A.5种B.4种C.3种D.2种
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明的家,学校和书店依次坐落在一条南北方向的大街上,学校在家南边20米,书店在家北边100米,小明从家出来向北走了50米,又向北走了﹣70米,此时,小明的位置在( )
A. 家 B. 学校 C. 书店 D. 不在上述地方
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com