【题目】如图,已知抛物线y=+mx+3与x轴交于A,B两点,与y轴交于点C,点B的坐标为(3,0),
(1)求m的值及抛物线的顶点坐标.
(2)点P是抛物线对称轴l上的一个动点,当PA+PC的值最小时,求点P的坐标.
【答案】(1)m=2,(1,4);(2)(1,2).
【解析】试题分析:(1)首先把点B的坐标为(3,0)代入抛物线y=+mx+3,利用待定系数法即可求得m的值,继而求得抛物线的顶点坐标;
(2)首先连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,然后利用待定系数法求得直线BC的解析式,继而求得答案.
试题解析:(1)把点B的坐标为(3,0)代入抛物线y=+mx+3得:0=+3m+3,
解得:m=2,
∴y=+2x+3=,
∴顶点坐标为:(1,4).
(2)连接BC交抛物线对称轴l于点P,则此时PA+PC的值最小,
设直线BC的解析式为:y=kx+b,
∵点C(0,3),点B(3,0),
∴,解得: ,
∴直线BC的解析式为:y=﹣x+3,
当x=1时,y=﹣1+3=2,
∴当PA+PC的值最小时,点P的坐标为:(1,2).
科目:初中数学 来源: 题型:
【题目】到三角形三个顶点距离相等的点是( )
A.三角形三条边的垂直平分线的交点
B.三角形三条角平分线的交点
C.三角形三条高的交点
D.三角形三条边的中线的交点
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c开口向下,顶点坐标(3,-5),那么该抛物线有( )
A. 最小值-5
B. 最大值-5
C. 最小值3
D. 最大值3
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=与一次函数y=ax+b的图象交于点A(2,2),B(,n).
(1)求这两个函数的解析式;
(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的一元二次方程x2-5x+p=0(p是常数)的一个实数根是1,则二次函数y=x2-5x+p的图像与x轴的交点坐标为( )
A. (1,0),(-1,0) B. (1,0),(-6,0) C. (1,0),(5,0) D. (1,0) ,(4,0)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com