精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xoy中,⊙O1与x轴交于A、B两点,与y轴正半轴交于C点,已知A(-1,0),O1(1,0)
(1)求出C点的坐标;
(2)过点C作CDAB交⊙O1于D,若过点C的直线恰好平分四边形ABCD的面积,求出该直线的解析式;
(3)如图,已知M(1,-2
3
),经过A、M两点有一动圆⊙O2,过O2作O2E⊥O1M于E,若经过点A有一条直线y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值.
(1)∵A(-1,0),O1(1,0),
∴OA=OO1又O1A=O1C,(1分)
∴易知△O1AC为等边三角形,(2分)
∴易求C点的坐标为(0,
3
).(4分)

(2)解法一:连接AD;
∵CDAB,
∴∠CDA=∠BAD,
AC
=
BD

∴AC=BD又AC不平行BD,
∴四边形ABCD为等腰梯形,(5分)
过D作DH⊥AB于H;
∴△AOC≌△BDH,四边形COHD为矩形,(6分)
∴CH必平分四边形ABCD的面积,(7分)
易求CH的解析式:y=-
3
2
x+
3
;(8分)
解法二:设直线CH平分四边形ABCD的面积,并设H(x,0),连接AD,
∵CDAB,
∴∠CDA=∠BAD,
AC
=
BD

∴AC=BD=2,
∵S△ACH=S梯形CDBH
1
2
3
(x+1)=
1
2
3
[2+(3-x)]

∴x+1=5-x,
∴x=2,由C(0,
3
)和H(2,0),
易求CH的解析式:y=-
3
2
x+
3


(3)证法一:分别延长MO1,MO2交⊙O2于P,N,连接PN;
∴PN=2O2E,(9分)
连接MA,MF,AN;
∵A(-1,0),M(1,-2
3
),
∴∠MAO1=60°,∠AMO1=30°,
∴∠NAO1=30°,
∵AF=2O2E=PN,
∴∠FMA=∠PMN,
∴∠PMN+∠PMF=∠FMA+∠PMF=∠AMO1=30°,
∴∠FMN=∠PMA=∠FAN=30°,(10分)
∴∠FAO1=60°,(11分)
∴易求AF的解析式为y=
3
x+
3

∴k=
3
,b=
3
.(12分)
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,⊙H与x轴交于A、B两点,与y轴交于C、D两点,圆心H的坐标是(1,-1),半径是
5

(1)求经过点D的切线的解析式;
(2)问过点A的切线与过点D的切线是否垂直?若垂直,请写出证明过程;若不垂直,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线AB与直线BC相交于点B(-2,2),直线AB与y轴相交于点A(0,4),直线BC与x轴、y轴分别相交于点D(-1,0)、点C.
(1)求直线AB的解析式;
(2)过点A作BC的平行线交x轴于点E,求点E的坐标;
(3)在(2)的条件下,点P是直线AB上一动点且在x轴的上方,如果以点D、E、P、Q为顶点的平行四边形的面积等于△ABC面积,请求出点P的坐标,并直接写出点Q的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

百舸竞渡,激情飞扬.为纪念爱国诗人屈原,邵阳市在资江河隆重举行了“海洋明珠杯”龙舟赛.图(十二)是甲、乙两支龙舟队在比赛时的路程s(米)与时间t(分钟)之间的函数关系图象,请你根据图象回答下列问题:
(1)1.8分钟时,哪支龙舟队处于领先地位?
(2)在这次龙舟比赛中,哪支龙舟队先到达终点?
(3)比赛开始多少时间后,先到达终点的龙舟队就开始领先?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如示意图,在平面直角坐标系中,O为坐标原点,点A是x轴的负半轴上一点,以AO为直径的⊙P经过点C(-8,4).点E(m,n)在⊙P上,且-10<m≤-5,n<0,CE与x轴相交于点M,过C点作直线CN交x轴于点N,交⊙P于点F,使得△CMN是以MN为底的等腰三角形,经过E、F两点的直线与x轴相交于点Q.
(1)求出点A的坐标;
(2)当m=-5时,求图象经过E、Q两点的一次函数的解析式;
(3)当点E(m,n)在⊙P上运动时,猜想∠OQE的大小会发生怎样的变化?请对你的猜想加以证明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,四边形OABC是矩形,点A、C的坐标分别为(3,0)、(0,1),点D是线段BC上的动点(与端点B、C不重合),过点D作直线y=-
1
2
x+b
交折线OAB于点E.
(1)记△ODE的面积为S,求S与b的函数关系式;
(2)当点E在线段OA上时,若矩形OABC关于直线DE的对称图形为四边形O1A1B1C1,DE=
5
,试探究四边形O1A1B1C1与矩形OABC的重叠部分的面积是否发生变化?若不变,求出该重叠部分的面积;若改变,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某客船往返于A、B两码头,在A、B间有旅游码头C.客船往返过程中,船在C、B处停留时间忽略不计,设客船离开码头A的距离s(千米)与航行的时间t(小时)之间的函数关系如图所示.根据图象提供的信息,解答下列问题:
(1)船只从码头A→B航行的速度为______千米/时;船只从码头B→A,航行的速度为______千米/时;
(2)过点C作CHt轴,分别交AD、DF于点G、H,设AC=x,GH=y,求出y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

设P(x,0)是x轴上的一个动点,它与x轴上表示-3的点的距离为y.
(1)求y与x之间的函数解析式;
(2)画出这个函数的图象.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知如图△ABC的面积为16,AB=AC=8,D是BC上任意一点,过D作DE⊥AC,DF⊥AB,垂足为E,F,若DF=x,DE=y,y关于x的函数关系式是______.

查看答案和解析>>

同步练习册答案