精英家教网 > 初中数学 > 题目详情
某客船往返于A、B两码头,在A、B间有旅游码头C.客船往返过程中,船在C、B处停留时间忽略不计,设客船离开码头A的距离s(千米)与航行的时间t(小时)之间的函数关系如图所示.根据图象提供的信息,解答下列问题:
(1)船只从码头A→B航行的速度为______千米/时;船只从码头B→A,航行的速度为______千米/时;
(2)过点C作CHt轴,分别交AD、DF于点G、H,设AC=x,GH=y,求出y与x之间的函数关系式.
(1)船只从码头A→B,航行速度为:90÷3=30千米/时;
船只从码头B→A,航行速度为:90÷(7.5-3)=20千米/时;

(2)设CH交DE于M,ME=AC=x,DM=90-x,
∵GHAF,
∴△DGH△DAF,
GH
AF
=
DM
DE

y
7.5
=
90-x
90

∴y=7.5-
7.5
90
x,
∴y=
15
2
-
1
12
x,
∴y与x之间的函数关系式y=-
1
12
x+
15
2


故答案为:30、20.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

某早餐店每天的利润y(元)与售出的早餐x(份)之间的函数关系如图所示.当每天售出的早餐超过150份时,需要增加一名工人.
(1)该店每天至少要售出______份早餐才不亏本;
(2)求出150<x≤300时,y关于x的函数解析式;
(3)要使每天有120元以上的盈利,至少要售出多少份早餐?
(4)该店每出售一份早餐,盈利多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xoy中,⊙O1与x轴交于A、B两点,与y轴正半轴交于C点,已知A(-1,0),O1(1,0)
(1)求出C点的坐标;
(2)过点C作CDAB交⊙O1于D,若过点C的直线恰好平分四边形ABCD的面积,求出该直线的解析式;
(3)如图,已知M(1,-2
3
),经过A、M两点有一动圆⊙O2,过O2作O2E⊥O1M于E,若经过点A有一条直线y=kx+b(k>0)交⊙O2于F,使AF=2O2E,求出k、b的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线l:y=-
3
3
x+
3
交x轴于点A,交y轴于点B,将△AOB沿直线l翻折,点O的对应点C恰好落在双曲线y=
k
x
(k>0)
上.
(1)求k的值;
(2)将△ABC绕AC的中点旋转180°得到△PCA,请判断点P是否在双曲线y=
k
x
上,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途经配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图象.
(1)A、B两地的距离是______千米,甲车出发______小时到达C地;
(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图中补全函数图象;
(3)乙车出发多长时间,两车相距150千米.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

小明同学受《乌鸦喝水》故事的启发,利用量桶和完全相同的若干个小球进行了如下操作(量桶是圆柱体,高为49cm,桶内水高30cm(如图1)):若将三个小球放入量桶中,水高如图2所示.
解答下列问题:
(1)若只放入一个小球,量桶中水面将升高______cm;
(2)求放入小球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数表达式(不要求写出自变量的取值范围);
(3)要使量桶有水溢出,问至少要放入几个小球(如图3)?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商厦试销一种成本为50元/件的商品,规定试销时的销售单价不低于成本,又不高于80元/件,试销中销售量y(件)与销售单价x(元/件)的关系可近似的看作一次函数(如图).
(1)求y与x的关系式;
(2)设商厦获得的毛利润(毛利润=销售额-成本)为s(元),则销售单价定为多少时,该商厦获利最大,最大利润是多少?此时的销售量是多少件?

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

观察图形

上图中每个小正方形都是由四根火柴秆组成的,那么火柴秆的数量y(根)与小正方形的个数n的关系为______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

直线PA是一次函数y=x+n(n>0)的图象,直线PB是一次函数y=-2x+m(m>n)的图象,PA与y轴交于Q点(如图所示),若四边形PQOB的面积是
5
6
,AB=2.
(1)用m或n表示A、B、Q、三点的坐标;
(2)求A、B两点的坐标;
(3)求直线PA与PB的解析式.

查看答案和解析>>

同步练习册答案