A. | 1 | B. | 2 | C. | 3 | D. | 4 |
分析 ①由题意知,△ABC是等腰直角三角形,根据等腰直角三角形即可作出判断;
②如图1,当点E与点B重合时,点H与点B重合,可得MG∥BC,四边形MGCB是矩形,进一步得到FG是△ACB的中位线,从而作出判断;
③如图2所示,SAS可证△ECF≌△ECD,根据全等三角形的性质和勾股定理即可作出判断;
④根据AA可证△ACE∽△BFC,根据相似三角形的性质可得AF•BF=AC•BC=1,由题意知四边形CHMG是矩形,再根据平行线的性质和等量代换得到MG•MH=$\frac{\sqrt{2}}{2}$AE×$\frac{\sqrt{2}}{2}$BF=$\frac{1}{2}$AE•BF=$\frac{1}{2}$AC•BC=$\frac{1}{2}$,依此即可作出判断.
解答 解:①由题意知,△ABC是等腰直角三角形,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{2}$,故①正确;
②如图1,当点E与点B重合时,点H与点B重合,
∴MB⊥BC,∠MBC=90°,
∵MG⊥AC,
∴∠MGC=90°=∠C=∠MBC,
∴MG∥BC,四边形MGCB是矩形,
∴MH=MB=CG,
∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,
∴CF=AF=BF,
∴FG是△ACB的中位线,
∴GC=$\frac{1}{2}$AC=MH,故②正确;
③如图2所示,
∵AC=BC,∠ACB=90°,
∴∠A=∠5=45°.
将△ACF顺时针旋转90°至△BCD,
则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;
∵∠2=45°,
∴∠1+∠3=∠3+∠4=45°,
∴∠DCE=∠2.
在△ECF和△ECD中,
$\left\{\begin{array}{l}{CF=CD}\\{∠2=∠DCE}\\{CE=CE}\end{array}\right.$,
∴△ECF≌△ECD(SAS),
∴EF=DE.
∵∠5=45°,
∴∠DBE=90°,
∴DE2=BD2+BE2,即EF2=AF2+BE2,故③错误;
④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,
∵∠A=∠5=45°,
∴△ACE∽△BFC,
∴$\frac{AE}{BC}$=$\frac{AC}{BF}$,
∴AE•BF=AC•BC=1,
由题意知四边形CHMG是矩形,
∴MG∥BC,MH=CG,
MG=CH,MH∥AC,
∴$\frac{CH}{BC}$=$\frac{AE}{AB}$;$\frac{CG}{AC}$=$\frac{BF}{AB}$,
即$\frac{MG}{1}$=$\frac{AE}{\sqrt{2}}$;$\frac{MH}{1}$=$\frac{BF}{\sqrt{2}}$,
∴MG=$\frac{\sqrt{2}}{2}$AE;MH=$\frac{\sqrt{2}}{2}$BF,
∴MG•MH=$\frac{\sqrt{2}}{2}$AE×$\frac{\sqrt{2}}{2}$BF=$\frac{1}{2}$AE•BF=$\frac{1}{2}$AC•BC=$\frac{1}{2}$,故④正确;
故选:C.
点评 此题考查了三角形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | $4\sqrt{3}$ | B. | $4\sqrt{5}$ | C. | $4\sqrt{3}+2$ | D. | 12 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 镇江十中 | B. | 姚桥中学 | C. | 大港中学 | D. | 京口中学 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com