精英家教网 > 初中数学 > 题目详情
8.如图,在△ABC中,∠ACB=90°,AC=BC=1,E、F为线段AB上两动点,且∠ECF=45°,过点E、F分别作BC、AC的垂线相交于点M,垂足分别为H、G.现有以下结论:①AB=$\sqrt{2}$;②当点E与点B重合时,MH=$\frac{1}{2}$;③AF+BE=EF;④MG•MH=$\frac{1}{2}$,其中正确结论的个数是(  )
A.1B.2C.3D.4

分析 ①由题意知,△ABC是等腰直角三角形,根据等腰直角三角形即可作出判断;
②如图1,当点E与点B重合时,点H与点B重合,可得MG∥BC,四边形MGCB是矩形,进一步得到FG是△ACB的中位线,从而作出判断;
③如图2所示,SAS可证△ECF≌△ECD,根据全等三角形的性质和勾股定理即可作出判断;
④根据AA可证△ACE∽△BFC,根据相似三角形的性质可得AF•BF=AC•BC=1,由题意知四边形CHMG是矩形,再根据平行线的性质和等量代换得到MG•MH=$\frac{\sqrt{2}}{2}$AE×$\frac{\sqrt{2}}{2}$BF=$\frac{1}{2}$AE•BF=$\frac{1}{2}$AC•BC=$\frac{1}{2}$,依此即可作出判断.

解答 解:①由题意知,△ABC是等腰直角三角形,
∴AB=$\sqrt{A{C}^{2}+B{C}^{2}}$=$\sqrt{2}$,故①正确;

②如图1,当点E与点B重合时,点H与点B重合,

∴MB⊥BC,∠MBC=90°,
∵MG⊥AC,
∴∠MGC=90°=∠C=∠MBC,
∴MG∥BC,四边形MGCB是矩形,
∴MH=MB=CG,
∵∠FCE=45°=∠ABC,∠A=∠ACF=45°,
∴CF=AF=BF,
∴FG是△ACB的中位线,
∴GC=$\frac{1}{2}$AC=MH,故②正确;

③如图2所示,

∵AC=BC,∠ACB=90°,
∴∠A=∠5=45°.
将△ACF顺时针旋转90°至△BCD,
则CF=CD,∠1=∠4,∠A=∠6=45°;BD=AF;
∵∠2=45°,
∴∠1+∠3=∠3+∠4=45°,
∴∠DCE=∠2.
在△ECF和△ECD中,
$\left\{\begin{array}{l}{CF=CD}\\{∠2=∠DCE}\\{CE=CE}\end{array}\right.$,
∴△ECF≌△ECD(SAS),
∴EF=DE.
∵∠5=45°,
∴∠DBE=90°,
∴DE2=BD2+BE2,即EF2=AF2+BE2,故③错误;

④∵∠7=∠1+∠A=∠1+45°=∠1+∠2=∠ACE,
∵∠A=∠5=45°,
∴△ACE∽△BFC,
∴$\frac{AE}{BC}$=$\frac{AC}{BF}$,
∴AE•BF=AC•BC=1,
由题意知四边形CHMG是矩形,
∴MG∥BC,MH=CG,
MG=CH,MH∥AC,
∴$\frac{CH}{BC}$=$\frac{AE}{AB}$;$\frac{CG}{AC}$=$\frac{BF}{AB}$,
即$\frac{MG}{1}$=$\frac{AE}{\sqrt{2}}$;$\frac{MH}{1}$=$\frac{BF}{\sqrt{2}}$,
∴MG=$\frac{\sqrt{2}}{2}$AE;MH=$\frac{\sqrt{2}}{2}$BF,
∴MG•MH=$\frac{\sqrt{2}}{2}$AE×$\frac{\sqrt{2}}{2}$BF=$\frac{1}{2}$AE•BF=$\frac{1}{2}$AC•BC=$\frac{1}{2}$,故④正确;
故选:C.

点评 此题考查了三角形综合题,涉及的知识点有:等腰直角三角形的判定和性质,平行线的判定和性质,矩形的判定和性质,三角形中位线的性质,全等三角形的判定和性质,勾股定理,相似三角形的判定和性质,综合性较强,有一定的难度.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.如图,在?ABCD中,∠BAD的平分线交DC于点E,若DE:EC=3:1,AB的长为8,AB边上的高线长为5,求BC与AD之间的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.如图,PA、PB是⊙O的切线,A、B为切点,AC是⊙O的直径,AC、PB的延长线相交于点D.
(1)若∠1=20°,求∠APB的度数;
(2)当∠1为多少度时,OP=OD,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

16.如图,已知等边△ABC的边长为8,以AB为直径的圆交BC于点F.以C为圆心,CF长为半径作图,D是⊙C上一动点,E为BD的中点,当AE最大时,BD的长为(  )
A.$4\sqrt{3}$B.$4\sqrt{5}$C.$4\sqrt{3}+2$D.12

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.(1)如图1,长方形ABCD中分别沿AF、CE将AC两侧折叠,使点B、D分别落在AC上的G、H处,则线段AE=CF.(填“>”“<”或“=”)
(2)如图2,在平行四边形ABCD中,△ABF≌△CDE,AB=10cm,BF=6cm,AF=8cm,动点P、Q分别从A、C两点同时出发,点P自A→F→B→A停止,点Q自C→D→E→C停止.
①若点P的速度为每秒5cm,点Q的速度为每秒4cm,设运动时间为t秒.当点P在FB上运动,而点Q在DE上运动时,若四边形APCQ是平行四边形,求此时t的值.
②若点P、Q的运动路程分别为a、b(单位:cm,ab≠0),利用备用图探究,当a与b满足什么数量关系时,四边形APCQ是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知(a+3)2+|3b-1|=0,求a2014b2015的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.镇江某中学教师每天乘坐公交车上班.如图是该教师坐在公交车上透过前面车辆的后窗玻璃拍摄到的该车的车号.若212路公交车途径镇江十中,215路途径姚桥中学,512路途径大港中学,515路途径京口中学,那么该教师的工作地点是(  )
A.镇江十中B.姚桥中学C.大港中学D.京口中学

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,在平面直角坐标系中,二次函数y=x2-2x-3的图象与x轴交于A,B两点,与y轴交于点C,连接BC,点D位抛物线的顶点,点P是第四象限的抛物线上的一个动点(不与点D重合).
(1)求∠OBC的度数;
(2)连接CD,BD,DP,延长DP交x轴正半轴于点E,且S△OCE=S四边形OCDB,求此时P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.若(x-53)(x-47)=24,求(x-53)2+(x-47)2=84.

查看答案和解析>>

同步练习册答案