精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形是由两个小正方形和两个小长方形组成的,根据图形解答下列问题:

1)请用两种不同的方法表示正方形的面积,并写成一个等式;

2)运用(1)中的等式,解决以下问题:

①已知,求的值;

②已知,求的值.

【答案】1)正方形的面积可表示为:;等式:;(2)①;②103.

【解析】

1)用正方形的面积公式直接求出正方形的面积;利用四个矩形的面积之和求出正方形的面积,即可得到一个等式;

2)①根据(1)中的等式进行直接求解即可;

②令a=x-y,对等式进行变形后,利用(1)中的等式进行求解.

1)正方形ABCD的面积可表示为:

等式:

2)①∵

由(1)得:

②令a=x-y,则a+z=11az=9

∴原式可变形为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,二次函数y=x2+bx+c的图象过点A(1,0)和C(0,﹣3)

(1)求这个二次函数的解析式;

(2)如果这个二次函数的图象与x轴的另一个交点为B,求线段AB的长.

(3)在这条抛物线上是否存在一点P,使ABP的面积为8?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在平面直角坐标系中AB的坐标分别为A(1,0),B(3,0),探究抛物线m为常数x轴于点MN两点

(1)m=2

求出抛物线的顶点坐标及线段MN的长

抛物线上有一点P使求出点P的坐标

(2)对于抛物线m为常数).

线段MN的长是否发生变化请说明理由

若该抛物线与线段AB有公共点请直接写出m的取值范围

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本题满分12分抛物线y=-x2+m-1x+m与y轴交于0,3点.

1求出m的值并画出这条抛物线;

2求它与x轴的交点和抛物线顶点的坐标;

3x取什么值时,抛物线在x轴上方?

4x取什么值时,y的值随x值的增大而减小?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在直角三角形ABC中,∠BAC=90°,AB=AC,DBC的中点,EAC上一点,点GBE上,连接DG并延长交AEF,若∠FGE=45°.

(1)求证:BDBC=BGBE;

(2)求证:AG⊥BE;

(3)若EAC的中点,求EF:FD的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用一个直径为10cm的玻璃球和一个圆锥形的牛皮纸纸帽制作一个不倒翁玩具,不倒翁的轴截面如图所示,圆锥的母线AB与⊙O相切于点B,不倒翁的顶点A到桌面L的最大距离是18cm.若将圆锥形纸帽表面全涂上颜色,则涂色部分的面积为_____cm2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx8x轴,y轴分别交于点AB,直线yx1与直线AB交于点C,与y轴交于点D

1)求点C的坐标.

2)求BDC的面积.

3)如图,Py轴正半轴上的一点,Q是直线AB上的一点,连接PQ

①若PQx轴,且点A关于直线PQ的对称点A恰好落在直线CD上,求PQ的长.

②若BDCBPQ全等(Q不与点C重合),请写出所有满足要求的点Q坐标(直接写出答案).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某县教育局为了丰富初中学生的大课间活动,要求各学校开展形式多样的阳光体育活动.某中学就学生体育活动兴趣爱好的问题,随机调查了本校某班的学生,并根据调查结果绘制成如下的不完整的扇形统计图和条形统计图:

1)在这次调查中,喜欢篮球项目的同学有   人,在扇形统计图中,乒乓球的百分比为   %,如果学校有800名学生,估计全校学生中有   人喜欢篮球项目.

2)请将条形统计图补充完整.

3)在被调查的学生中,喜欢篮球的有2名女同学,其余为男同学.现要从中随机抽取2名同学代表班级参加校篮球队,请直接写出所抽取的2名同学恰好是1名女同学和1名男同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在一个平台远处有一座古塔,小明在平台底部的点C处测得古塔顶部B的仰角为60°,在平台上的点E处测得古塔顶部的仰角为30°.已知平台的纵截面为矩形DCFE,DE=2米,DC=20米,求古塔AB的高(结果保留根号)

查看答案和解析>>

同步练习册答案