【题目】已知△ABC是等腰直角三角形,∠A=90°,点D是腰AC上的一个动点,过C作CE垂直于BD的延长线,垂足为E.
(1)若BD是AC边上的中线,如图1,求的值;
(2)若BD是∠ABC的角平分线,如图2,求的值.
【答案】(1);(2)2.
【解析】
设AB=AC=1,CD=x,应用勾股定理和相似三角形的判定和性质,把用x来表示,
(1)若BD是AC的中线,则CD=AD,据此求出的值;
(2)若BD是∠ABC的角平分线,则由Rt△ABD∽Rt△EBC得,据此求出的值.
设AB=AC=1,CD=x,则0<x≤1,BC=,AD=1-x.
在Rt△ABD中,BD2=AB2+AD2=1+(1-x)2=x2-2x+2.
由已知可得Rt△ABD∽Rt△ECD,
∴,即,∴.
∴,0<x≤1.
(1)若BD是AC的中线,则CD=AD=x=,得.
(2)若BD是∠ABC的角平分线,则Rt△ABD∽Rt△EBC,
∴,得,即,解得,.
∴.
科目:初中数学 来源: 题型:
【题目】赣县田村素称“灯彩之乡”,田村花灯源于唐代,盛于宋朝,迄今已有1300多年历史了,某公司生产了一种田村花灯,每件田村花灯制造成本为20元.设销售单价x(元),每日销售量y(件)、每日的利润w(元).在试销过程中,每日销售量y(件)、每日的利润w(元)与销售单价x(元)之间存在一定的关系,其几组对应量如下表所示:
销售单价x(元) | 30 | 31 | 32 | 40 |
销售量y(件) | 40 | 38 | 36 | 20 |
(1)根据表中数据的规律、分別写出每日销售量y(件)、每日利润w(元)关于销售单价x(元)之间的函数表达式(利润=(销售单价﹣成本单价)×销售件数).
(2)当销售单价为多少元时,公司每日能够获得最大利润?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象分别交x轴、y轴于C,D两点,交反比例函数图象于A(,4),B(3,m)两点.
(1)求直线CD的表达式;
(2)点E是线段OD上一点,若,求E点的坐标;
(3)请你根据图象直接写出不等式的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y1=ax+b与反比例函数y2=交于A,B两点,与x轴交于点C,点A的纵坐标为6,点B的坐标为(-3,-2).
(1)求直线和反比例函数的解析式;
(2)求点C的坐标,并结合图象直接写出y1<0时x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,点A在x轴上,点C在y轴上,将边BC折叠,使点B落在OA上的点D处,已知折痕CE=5,且4AE=3AD.
①判断△OCD与△ADE是否相似,请说明理由。
②求直线CE与x轴的交点P的坐标。
③是否存在过点D的直线l,使直线l与两坐标轴围成的三角形与直线CE与两坐标轴围成的三角形相似,如果存在,请求出其解析式,如果不存在,请说明理由。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形ABCD中,∠ABC=60°,延长BA至点F,延长CB至点E,使BE=AF,连结CF,EA,AC,延长EA交CF于点G.
(1)求证:△ACE≌△CBF;
(2)求∠CGE的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下列一组方程:①;②;③;④;…
它们的根有一定的规律,都是两个连续的自然数,我们称这类一元二次方程为“连根一元二次方程”。若也是“连根一元二次方程”,则的值为________,第个方程为______________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com