【题目】某商场计划购进甲、乙两种商品,已知购进甲商品2件和乙商品1件共需50元;购进甲商品1件和乙商品2件共需70元.
(1)求甲、乙两种商品每件的进价分别是多少元?
(2)商场决定甲商品以每件20元出售,乙商品以每件50元出售,为满足市场需求,需购进甲、乙两种商品共60件,且甲种商品的数量不少于乙种商品数量的4倍,请你求出获利最大的进货方案,并求出最大利润.
【答案】(1)甲、乙两种商品每件的进价分别是10元、30元;(2)当购进甲商品48件,乙商品12件时可获得最大利润720元.
【解析】
(1)根据购进甲商品2件和乙商品1件共需50元,购进甲商品1件和乙商品2件共需70元可以列出相应的方程组,从而可以求得甲、乙两种商品每件的进价分别是多少元;
(2)根据题意可以得到利润与购买甲种商品的函数关系式,从而可以解答本题.
(1)设甲种商品每件的进价为x元,乙种商品每件的进价为y元,
,得,
答:甲、乙两种商品每件的进价分别是10元、30元;
(2)设该商场购进甲种商品m件,则购进乙种商品(60-m)件,设卖完甲、乙两种商品商场的利润为w元,
则w=(20-10)m+(50-30)(60-m)=-10m+1200,
∵m≥4(60-m),
解得:m≥48,
∴当m=48时,w取得最大值,最大利润为:-10×48+1200=720元,
∴60-m=12,
答:当购进甲商品48件,乙商品12件时可获得最大利润720元.
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作DE⊥AC交AC于点E,AC的反向延长线交⊙O于点F.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若∠C=30°,⊙O的半径为6,求弓形AF的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:有这样一个问题:关于的一元二次方程有两个不相等的且非零的实数根探究,,满足的条件.
小明根据学习函数的经验,认为可以从二次函数的角度看一元二次方程,下面是小明的探究过程:①设一元二次方程对应的二次函数为;
②借助二次函数图象,可以得到相应的一元二次中,,满足的条件,列表如下:
方程根的几何意义:
方程两根的情况 | 对应的二次函数的大致图象 | ,,满足的条件 |
方程有两个不相等的负实根 | ||
____________ | ||
方程有两个不相等的正实根 | ____________ | ____________ |
(1)参考小明的做法,把上述表格补充完整;
(2)若一元二次方程有一个负实根,一个正实根,且负实根大于-1,求实数的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校初三年级进行女子800米测试,甲、乙两名同学同时起跑,甲同学先以a米/秒的速度匀速跑,一段时间后提高速度,以米/秒的速度匀速跑,b秒到达终点,乙同学在第60秒和第140秒时分别减慢了速度,设甲、乙两名同学所的路程为s(米),乙同学所用的时间为t(秒),s与t之间的函数图象如图所示.
(1)乙同学起跑的速度为______米/秒;
(2)求a、b的值;
(3)当乙同学领先甲同学60米时,直接写出t的值是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】综合与探究:
如图所示,在平面直角坐标系中,直线与反比例函数的图象交于,两点,过点作轴于点,过点作轴于点.
(1)求,的值及反比例函数的函数表达式;
(2)若点在线段上,且,请求出此时点的坐标;
(3)小颖在探索中发现:在轴正半轴上存在点,使得是以为顶角的等腰三角形.请你直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1、图2、图3、…、图n分别是⊙O的内接正三角形ABC,正四边形ABCD、正五边形ABCDE、…、正n边形ABCD…,点M、N分别从点B、C开始以相同的速度在⊙O上逆时针运动。
(1)求图1中∠APN的度数;
(2)图2中,∠APN的度数是_______,图3中∠APN的度数是________。
(3)试探索∠APN的度数与正多边形边数n的关系(直接写答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB为⊙O的直径,AB⊥AC,BC交⊙O于D,E是AC的中点,AD=2BD,ED与AB的延长线相交于点F,连接AD.
(1)求证:DE为⊙O的切线.
(2)求证:△FDB∽△FAD;
(3)若BF=2,,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.
收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述数据:按如下数据段整理、描述这两组数据
分段 学校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
|
|
|
|
|
|
|
分析数据:两组数据的平均数、中位数、众数、方差如下表:
统计量 学校 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | m | 115.25 |
经统计,表格中m的值是 .
得出结论:
a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 .
b可以推断出 学校学生的数学水平较高,理由为 .(至少从两个不同的角度说明推断的合理性)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以AB边为直径的⊙O经过点P,C是⊙O上一点,连结PC交AB于点E,且∠ACP=60°,PA=PD.
(1)试判断PD与⊙O的位置关系,并说明理由;
(2)若点C是弧AB的中点,已知AB=4,求CECP的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com