精英家教网 > 初中数学 > 题目详情
如图,Rt△ABC≌Rt△FDE,AB=8cm,BC=6cm,将△ABC沿射线DE的方向以2cm/秒的速度平移,在平移过程中,是否存在某个时刻t,使△AEF成为等腰三角形,若存在,请求出t值;若不存在,请说明理由.
分析:首先由全等三角形的性质,得出∠ABC=∠FDE=90°,再结合勾股定理得出AC=EF=10.假设△ABC沿射线DE的方向平移,在平移过程中,存在某个时刻t,使△AEF成为等腰三角形,则分三种情况分别讨论:(1)以AE为底;(2)以EF为底;(3)以AF为底.
解答:解:∵Rt△ABC≌Rt△FDE,
∴∠ABC=∠FDE=90°,AC=EF,
又∵AB=8cm,BC=6cm,
∴AC=EF=10.
假设△ABC沿射线DE的方向平移,在平移过程中,存在某个时刻t,使△AEF成为等腰三角形,则BD=2t.
分三种情况:
(1)以AE为底,则有AF=FE,即AD=DE,可列方程:8-2t=6,解得t=1;
(2)以EF为底,则有AE=AF.
∵AE2=(14-2t)2,由勾股定理可得AF2=(8-2t)2+82
∴(14-2t)2=(8-2t)2+82,解得t=
17
6

(3)以AF为底,则有AE=EF,
若B在线段DE上(如图1),可列方程:14-2t=10,解得t=2;

若B在线段DE的延长线上(如图2),

可列方程2t-14=10,解得t=12.
综上所述,存在当t=1S,2S,
17
6
S,12S时,△AEF是等腰三角形.
点评:本题考查了全等三角形的性质,等腰三角形的判定,勾股定理及平移的性质,综合性较强,有一定难度,进行分类讨论是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,Rt△ABC的直角边AC落在数轴上,点A表示的数是2,以A为旋转中心逆时针旋转△ABC.
(1)当∠B=70°时,则旋转角度至少是
 
度时,点B的对应点落在数轴上;
(2)若AB=
5
,点B的对应点B1第一次落在数轴上时,那么点B1所表示的数是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,BC=6cm,AC=8cm,点P从B点出发,以2cm/s的速度向点C运动,点Q从C点出发,以1cm/s的速度向点A运动.若P,Q同时出发,则经过
2.4
2.4
s时,P,Q两点的距离最近,最近距离为
6
5
5
6
5
5
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知,如图,Rt△ABC中∠B=90°,Rt△DEF中∠E=90°,OF=OC,AB=6,BF=2,CE=8,CA=0,DE=15.
(1)求证:△ABC∽△DEF;
(2)求线段DF,FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•封开县一模)如图,Rt△ABC的直角边BC=8,AC=6
(1)用尺规作图作AB的垂直平分线l,垂足为D,(保留作图痕迹,不要求写作法、证明);
(2)连结D、C两点,求CD的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,Rt△ABC中,∠C=90°,AC=4,BC=3,以△ABC的一边为边画等腰三角形,使它的第三个顶点在△ABC的其它边上.请在图①、图②、图③、图④中分别画出一个符合条件的等腰三角形,且四个图形中的等腰三角形各不相同,并在图中表明所画等腰三角形哪两条边相等(要求尺规作图并保留痕迹).

查看答案和解析>>

同步练习册答案