【题目】如图,在平面直角坐标系xOy中,矩形OABC的顶点A在x轴上,顶点C在y轴上,D是BC的中点,过点D的反比例函数图象交AB于E点,连接DE.若OD=5,tan∠COD=.
(1)求过点D的反比例函数的解析式;
(2)求△DBE的面积;
(3)x轴上是否存在点P使△OPD为直角三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.
【答案】(1)(2)3(3)P点的坐标是(4,0)或(,0).
【解析】
(1)由四边形OABC是矩形,得到BC=OA,AB=OC,根据tan∠COD=,设OC=3x,CD=4x,求出OD=5x=5,OC=3,CD=4,得到D(4,3),代入反比例函数的解析式即可.
(2)根据D点的坐标求出点B,E的坐标即可求出结论;
(3)分类讨论:当∠OPD=90°时,过D作PD⊥x轴于P,点P即为所求,当∠ODP=90°时,根据射影定理即可求得结果.
(1)∵四边形OABC是矩形,
∴BC=OA,AB=OC,
∵tan∠COD=,
∴设OC=3x,CD=4x,
∴OD=5x=5,
∴x=1,
∴OC=3,CD=4,
∴D(4,3),
设过点D的反比例函数的解析式为:y=,
∴k=12,
∴反比例函数的解析式为:y=;
(2)∵点D是BC的中点,
∴B(8,3),
∴BC=8,AB=3,
∵E点在过点D的反比例函数图象上,
∴E(8,),
∴S△DBE=BDBE==3;
(3)存在,
∵△OPD为直角三角形,
∴当∠OPD=90°时,PD⊥x轴于P,
∴OP=4,
∴P(4,0),
当∠ODP=90°时,
如图,过D作DH⊥x轴于H,
∴OD2=OHOP,
∴OP=.
∴P(,O),
∴存在点P使△OPD为直角三角形,
∴P(4,O),(,O).
科目:初中数学 来源: 题型:
【题目】速度分别为100km/h和akm/h(0<a<100)的两车分别从相距s千米的两地同时出发,沿同一方向匀速前行.行驶一段时间后,其中一车按原速度原路返回,直到与另一车相遇时两车停止.在此过程中,两车之间的距离y(km)与行驶时间t(h)之间的函数关系如图所示.下列说法:①a=60;②b=2;③c=b+;④若s=60,则b=.其中说法正确的是( )
A.①②③B.②③④C.①②④D.①③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市智慧阅读活动正如火如茶地进行.某班学习委员为了解11月份全班同学课外阅读的情况,调查了全班同学11月份读书的册数,并根据调查结果绘制了如下不完整的条形统计图和扇形统计图:
(1)扇形统计图中“3册”部分所对应的圆心角的度数是 ,并把条形统计图补充完整;
(2)该班的学习委员11月份的读书册数为4册,若该班的班主任从11月份读书4册的学生中随机抽取两名同学参加学校举行的知识竞赛,请用列表法或画树状图求恰好有一名同学是学习委员的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某段笔直的限速公路上,规定汽车的最高行驶速度不能超过60km/h(即m/s),交通管理部门在离该公路100m处设置了一速度检测点A,在如图所示的坐标系中,A位于y轴上,测速路段BC在x轴上,点B在A的北偏西60°方向上,点C在点A的北偏东45°方向上.
(1)在图中直接标出表示60°和45°的角;
(2)写出点B、点C坐标;
(3)一辆汽车从点B匀速行驶到点C所用时间为15s.请你通过计算,判断该汽车在这段限速路上是否超速?(本小问中取1.7)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,A,B为定点,A(2,﹣3),B(4,﹣3),定直线l∥AB,P是l上一动点,l到AB的距离为6,M,N分别为PA,PB的中点下列说法中:
①线段MN的长始终为1;②△PAB的周长固定不变;
③△PMN的面积固定不变; ④若存在点Q使得四边形APBQ是平行四边形,则Q到MN所在直线的距离必为9.
其中正确的说法是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD和正方形AEFG中,边AE在边AB上,AB=,AE=1.将正方形AEFG绕点A逆时针旋转,设BE的延长线交直线DG于点P,当点P,G第一次重合时停止旋转.在这个过程中:
(1)∠BPD=______度;
(2)点P所经过的路径长为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“准互余三角形”.
(1)若△ABC是“准互余三角形”,∠C>90°,∠A=60°,则∠B= °;
(2)如图①,在Rt△ABC中,∠ACB=90°,AC=4,BC=5.若AD是∠BAC的平分线,不难证明△ABD是“准互余三角形”.试问在边BC上是否存在点E(异于点D),使得△ABE也是“准互余三角形”?若存在,请求出BE的长;若不存在,请说明理由.
(3)如图②,在四边形ABCD中,AB=7,CD=12,BD⊥CD,∠ABD=2∠BCD,且△ABC是“准互余三角形”,求对角线AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校九年级为了解学生课堂发言情况,随机抽取该年级部分学生,对他们某天在课堂上发言的次数进行了统计,其结果如下表,并绘制了如图所示的两幅不完整的统计图,已知B、E两组发言人数的比为5:2,请结合图中相关数据回答下列问题:
(1)则样本容量容量是______________,并补全直方图;
(2)该年级共有学生500人,请估计全年级在这天里发言次数不少于12的次数;
(3)已知A组发言的学生中恰有1位女生,E组发言的学生中有2位男生,现从A组与E组中分别抽一位学生写报告,请用列表法或画树状图的方法,求所抽的两位学生恰好是一男一女的概率。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在函数y=(k≠0)的图象上有三点(﹣3,y1)(﹣1,y2)(2,y3),若y2<y3,那么y1与y2的大小关系正确的是( )
A..y1<y2<0B..y2<y1<0C..0<y2<y1D.0<y1<y2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com