精英家教网 > 初中数学 > 题目详情
已知,如图,在Rt△ABC中,∠ABC=90°∠A=30°,CD⊥AB交AB于点E,且CD=AC,DF∥BC,分别与AB、AC交于点G、F.
(1)求证:GE=GF
(2)若BD=1,求DF的长。
(1)证明见解析;(2).

试题分析:(1)根据已知条件易证明Rt△AEC≌Rt△DFC,得CE=CF,则DE=AF,从而进一步证明Rt△AFG≌Rt△DEG,就可得到GE=GF;
(2)根据直角三角形的性质可以得到CE=AC,则CE=CD,即AB是CE的垂直平分线,则BC=BD=1.再根据直角三角形的性质进一步求得AB、BE的长,则AE=AB-BE,结合(1)中的全等三角形,知DF=AE.
(1)证明:∵DF∥BC,∠ACB=90°,
∴∠CFD=90°.
∵CD⊥AB,
∴∠AEC=90°.
在Rt△AEC和Rt△DFC中,∠AEC=∠CFD=90°,∠ACE=∠DCF,DC=AC,
∴Rt△AEC≌Rt△DFC.
∴CE=CF.
∴DE=AF.
而∠AGF=∠DGE,∠AFG=∠DEG=90°,
∴Rt△AFG≌Rt△DEG.
∴GF=GE.
(2)解:∵CD⊥AB,∠A=30°,
∴CE=AC=CD.
∴CE=ED.
∴BC=BD=1.
又∵∠ECB+∠ACE=90°,∠A+∠ACE=90°,
∴∠ECB=∠A=30°,∠CEB=90°,
∴BE=BC=BD=
在直角三角形ABC中,∠A=30°,
则AB=2BC=2.
则AE=AB-BE=
∵Rt△AEC≌Rt△DFC,
∴DF=AE=
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知正方形ABCD的对角线AC与BD交于点O,点E、F分别是OB、OC上的动点,
(1)如果动点E、F满足BE=CF(如图):
①写出所有以点E或F为顶点的全等三角形(不得添加辅助线);
②证明:AE⊥BF;
(2)如果动点E、F满足BE=OF(如图),问当AE⊥BF时,点E在什么位置,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下面关于直角三角形的全等的判定,不正确的是(      ).
A.有一锐角和一边对应相等的两个直角三角形全等
B.有两边对应相等的两个直角三角形全等
C.有两角对应相等,且有一条公共边的两个直角三角形全等
D.有两角和一边对应相等的两个直角三角形全等

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在边长为2的菱形ABCD中,∠A=60°,M是AD边的中点,N是AB边上一动点,将△AMN沿MN所在的直线翻折得到△A′MN,连接A′C. 则A′C长度的最小值是       .

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在平行四边ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论中一定成立的是       (把所有正确结论的序号都填在横线上)
(1)∠DCF=∠BCD,(2)EF=CF;(3)SΔBEC=2SΔCEF;(4)∠DFE=3∠AEF

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知三角形三边长分别为1、x、6,则x的取值范围是     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,为测量池塘边上两点A、B之间的距离,小明在池塘的一侧选取一点O,测得OA、OB的中点分别是点D、E,且DE=14米,则A、B间的距离是(  ).

A.18米         B.24米         C.28米              D.30米

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,有两颗树,一颗高10米,另一颗高4米,两树相距8米.一只鸟从一颗树的树梢飞到另一颗树的树梢,问小鸟至少飞行(  )
A.8米B.10米C.12米D.14米

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,在△ABC中,已知AB=AC,∠BAC=120°,AD⊥AC,DC=6 求BD的长.

查看答案和解析>>

同步练习册答案