精英家教网 > 初中数学 > 题目详情

【题目】如图,点B、D、E在一条直线上,BE与AC相交于点F,且

⑴求证:△ABC∽△ADE;

⑵求证:∠BAD=∠CAE;

⑶若∠BAD=18°,求∠EBC的度数.

【答案】(1)详见解析;(2)详见解析;(3)18°

【解析】

(1)根据相似三角形的判定定理证明;
(2)根据相似三角形的性质定理得到∠BAC=∠DAE,结合图形,证明即可;
(3)根据相似三角形的性质定理证明.

解:(1)证明:∵

∴△ABC~△ADE;
(2)∵△ABC~△ADE,
∴∠BAC=∠DAE,
∴∠BAC-∠DAF=∠DAE-∠DAF,
即∠BAD=∠CAE;
(3))∵△ABC~△ADE,
∴∠ABC=∠ADE,
∵∠ABC=∠ABE+∠EBC,∠ADE=∠ABE+∠BAD,
∴∠EBC=∠BAD=18°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知ADBC,BE=CE,ABC=2C,BF为B的平分线.求证:AB=2DE.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰△ABC内接于⊙O,AB=AC=4,BC=8,则⊙O的半径为___________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线C1x轴的一个交点为A(-1,0),另一个交点为B,轴的交点为C(0,-3),其顶点为D.

(1)求抛物线C1的解析式;

(2)如图1,将△OBC沿轴向右平移m个单位长度(0﹤)得到另一个三角形△EFG,将△EFG与△BCD重叠部分(四边形BPGQ)的面积记为S,用含m的代数式表示S;

(3)如图2,将抛物线C1平移,使其顶点为原点O,得到抛物线C2.若直线与抛物线C2交于S、T两点,点是线段ST上一动点(不与S、T重合),试探究抛物线C2上是否存在一点R,R关于点N的中心对称点K也在抛物线C2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,∠B的角平分线BEAD交于点EBED的角平分线EFDC交于点F,若AB=9DF=2FC,则BC=____.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA,过E作EF⊥AB,F为垂足,下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正确的结论有________(填序号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与轴正半轴相交,其顶点坐标为,下列结论:;②;③;④方程有两个相等的实数根,其中正确的结论是________.(只填序号即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点从点出发沿方向以的速度向点匀速运动,同时点从点出发沿方向以的速度向点匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点运动的时间是).过点于点,连接

1)四边形能够成为菱形吗?如果能,求出相应的值;如果不能,请说明理由;

2)当为何值时,为直角三角形?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数.回答下列问题:

1)求出它的图像与坐标轴的交点坐标;

2)当自变量满足什么条件时?函数值

3)当自变量时,则函数值的范围?

4)在所给的直角坐标系中,画出直线的图像.

查看答案和解析>>

同步练习册答案