精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,CD⊥AB于点D,⊙D经过点B,与BC交于点E,与AB交与点F.已知tanA= ,cot∠ABC= ,AD=8.

(1)求⊙D的半径;
(2)求CE的长.

【答案】
(1)

【答案】解:∵CD⊥AB,AD=8,tanA=
在Rt△ACD中,tanA= = ,AD=8,CD=4,
在Rt△CBD,cot∠ABC= = ,BD=3,
∴⊙D的半径为3


(2)

解:过圆心D作DH⊥BC,垂足为H,


∴BH=EH,
在Rt△CBD中∠CDB=90°,BC= =5,cos∠ABC= =
在Rt△BDH中,∠BHD=90°,cos∠ABC= = ,BD=3,BH=
∵BH=EH,
∴BE=2BH=
∴CE=BC﹣BE=5﹣ =


【解析】(1)根据三角函数的定义得出CD和BD,从而得出⊙D的半径;
(2)过圆心D作DH⊥BC,根据垂径定理得出BH=EH,由勾股定理得出BC,再由三角函数的定义得出BE,从而得出CE即可.
【考点精析】认真审题,首先需要了解垂径定理(垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧),还要掌握解直角三角形(解直角三角形的依据:①边的关系a2+b2=c2;②角的关系:A+B=90°;③边角关系:三角函数的定义.(注意:尽量避免使用中间数据和除法))的相关知识才是答题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算或化简:
(1)2cos30°﹣ +( 0+(﹣1)2017
(2)(1+ )÷

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC的顶点B在反比例函数 的图象上,AC边在x轴上,已知∠ACB=90°,∠A=30°,BC=4,则图中阴影部分的面积是(
A.12
B.4
C.12-3
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料:

数学活动课上,老师出了一道作图问题:如图,已知直线l和直线l外一点P.用直尺和圆规作直线PQ,使PQ⊥l于点Q.”

小艾的作法如下:

(1)在直线l上任取点A,以A为圆心,AP长为半径画弧.

(2)在直线l上任取点B,以B为圆心,BP长为半径画弧.

(3)两弧分别交于点P和点M

(4)连接PM,与直线l交于点Q,直线PQ即为所求.

老师表扬了小艾的作法是对的.

请回答:小艾这样作图的依据是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校在“626国际禁毒日”前组织七年级全体学生320人进行了一次“毒品预防知识”竞赛,赛后随机抽取了部分学生成绩进行统计,制作如表频数分布表和频数分布直方图,请根据图表提供的信息,解答下列问题:

少分数段(x表示分数)

频数

频率

50≤x<60

4

0.1

60≤x<70

a

0.2

70≤x<80

12

b

80≤x<90

10

0.25

90≤x<100

6

0.15


(1)表中a= , b= , 并补全直方图
(2)若用扇形统计图描述此成绩分布情况,则分数段80≤x<100对应扇形的圆心角度数是
(3)请估计该年级分数在60≤x<100的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在ABCD中,过点D作DE⊥AB于点E,点F在边CD上,DF=BE,连接AF,BF.
(1)求证:四边形DEBF是矩形;
(2)若AF平分∠DAB,AE=3,BF=4,求ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,拦水坝的横断面为梯形ABCD,AB∥CD,坝顶宽DC为6米,坝高DG为2米,迎水坡BC的坡角为30°,坝底宽AB为(8+2 )米.
(1)求背水坡AD的坡度;
(2)为了加固拦水坝,需将水坝加高2米,并且保持坝顶宽度不变,迎水坡和背水坡的坡度也不变,求加高后坝底HB的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等边△ABC,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹):
(1)作△ABC的外心O;
(2)设D是AB边上一点,在图中作出一个正六边形DEFGHI,使点F,点H分别在边BC和AC上.

查看答案和解析>>

同步练习册答案