精英家教网 > 初中数学 > 题目详情

【题目】对于二次函数y=x2﹣2mx﹣3,有下列说法:

①它的图象与x轴有两个公共点;

②如果当x≤1yx的增大而减小,则m=1;

③如果将它的图象向左平移3个单位后过原点,则m=﹣1;

④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为﹣3.

其中正确的说法是_____.(把你认为正确说法的序号都填上)

【答案】①④

【解析】

①根据函数与方程的关系解答;②找到二次函数的对称轴,再判断函数的增减性;③将m=-1代入解析式,求出和x轴的交点坐标,即可判断;④根据坐标的对称性,求出m的值,得到函数解析式,将m=2012代入解析式即可.

①∵△=4m2-4×(-3)=4m2+12>0,∴它的图象与x轴有两个公共点,故①正确;

②∵当x≤1yx的增大而减小,函数的对称轴x=-≥1,

∴在直线x=1的右侧(包括与直线x=1重合),

-≥1,即m≥1,故②错误;

③将m=-1代入解析式,得y=x2+2x-3,当y=0时,得x2+2x-3=0,即(x-1)(x+3)=0,

解得,x1=1,x2=-3,将图象向左平移3个单位后不过原点,故③错误;

④∵当x=4时的函数值与x=2008时的函数值相等,

∴对称轴为x==1006,

-=1006,m=1006,

原函数可化为y=x2-2012x-3,当x=2012时,y=20122-2012×2012-3=-3,故④正确

故答案为:①④.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】为了“迎国庆,向祖国母亲献礼”,某建筑公司承建了修筑一段公路的任务,指派甲、乙两队合作,18天可以完成,共需施工费126000元;如果甲、乙两队单独完成此项工程,乙队所用时间是甲队的1.5倍,乙队每天的施工费比甲队每天的施工费少1000.

1)甲、乙两队单独完成此项工程,各需多少天?

2)为了尽快完成这项工程任务,甲、乙两队通过技术革新提高了速度,同时,甲队每天的施工费提高了,乙队每天的施工费提高了,已知两队合作12天后,由甲队再单独做2天就完成了这项工程任务,且所需施工费比计划少了21200.

①分别求出甲、乙两队技术革新前每天的施工费用;

②求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠BAC和∠ABC的平分线相交于点O,过点OEFABBCF,交ACE,过点OODBCD,下列四个结论:

①∠AOB90°+C

AE+BFEF

③当∠C90°时,EF分别是ACBC的中点;

④若ODaCE+CF2b,则SCEFab

其中正确的是(  )

A.①②B.③④C.①②④D.①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,AB=AC=5,AB的垂直平分线DEAB、ACE、D.

(1)若BCD的周长为8,求BC的长;

(2)若∠A=40°,求∠DBC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以每小时60千米/时的速度沿此公路从地匀速开往地,乙车从地沿此公路匀速开往地,两车分别到达目的地后停止甲、乙两车相距的路程(千米)与甲车的行驶时间()之间的函数关系如图所示:

(1)乙年的速度为______千米/时,___________.

(2)求甲、乙两车相遇后之间的函数关系式,并写出相应的自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠MON60°,点AOM边上一点,点BCON边上两点,且ABAC,作点B关于OM的对称点点D,连接ADCDOD.

1)依题意补全图形;

2)猜想∠DAC °,并证明;

3)猜想线段OAODOC的数量关系,并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在等腰直角三角形中,,边上,连接,连接

1)求证:

2)点关于直线的对称点为,连接

①补全图形并证明

②利用备用图进行画图、试验、探究,找出当三点恰好共线时点的位置,请直接写出此时的度数,并画出相应的图形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级学生共900人,为了解这个年级学生的体能,从中随机抽取部分学生进行1 min的跳绳测试,并指定甲、乙、丙、丁四名同学对这次测试结果的数据作出整理,下图是这四名同学提供的部分信息:

甲:将全体测试数据分成6组绘成直方图(如图);

乙:跳绳次数不少于105次的同学占96%;

丙:第①、②两组频率之和为0.12,且第②组与第⑥组频数都是12;

丁:第②、③、④组的频数之比为4:17:15。

根据这四名同学提供的材料,下面有四个推断:

①这次跳绳测试共抽取了150人;②该年级跳绳次数的中位数在115~125之间

③第4组的人数为45人 ④如果跳绳次数不少于135次为优秀,根据这次调查结果,估计全年级达到跳绳优秀的人数可以超过250人,其中合理的个数是( )

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABCD中,点E是AB边的中点,DE与CB的延长线交于点F.

(1)求证:ADE≌△BFE;

(2)若DF平分ADC,连接CE.试判断CE和DF的位置关系,并说明理由.

查看答案和解析>>

同步练习册答案