【题目】如图,在△ABC中,∠BAC和∠ABC的平分线相交于点O,过点O作EF∥AB交BC于F,交AC于E,过点O作OD⊥BC于D,下列四个结论:
①∠AOB=90°+∠C;
②AE+BF=EF;
③当∠C=90°时,E,F分别是AC,BC的中点;
④若OD=a,CE+CF=2b,则S△CEF=ab.
其中正确的是( )
A.①②B.③④C.①②④D.①③④
【答案】C
【解析】
根据角平分线的定义和三角形内角和定理判断①;根据角平分线的定义和平行线的性质判断②;根据三角形三边关系判断③;根据角平分线的性质判断④.
∵∠BAC和∠ABC的平分线相交于点O,
∴∠OBA=∠CBA,∠OAB=∠CAB,
∴∠AOB=180°﹣∠OBA﹣∠OAB
=180°﹣∠CBA﹣∠CAB
=180°﹣(180°﹣∠C)
=90°+∠C,①正确;
∵EF∥AB,
∴∠FOB=∠ABO,又∠ABO=∠FBO,
∴∠FOB=∠FBO,
∴FO=FB,
同理EO=EA,
∴AE+BF=EF,②正确;
当∠C=90°时,AE+BF=EF<CF+CE,
∴E,F不是AC,BC的中点,③错误;
作OH⊥AC于H,
∵∠BAC和∠ABC的平分线相交于点O,
∴点O在∠C的平分线上,
∴OD=OH,
∴S△CEF=×CF×OD×CE×OH=ab,④正确.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图1,在等腰Rt△ABC中,∠BAC=90°,点E在AC上(且不与点A、C重合).在△ABC的外部作等腰Rt△CED,使∠CED=90°,连接AD,分别以AB,AD为邻边作平行四边形ABFD,连接AF.
(1)求证:△AEF是等腰直角三角形;
(2)如图2,将△CED绕点C逆时针旋转,当点E在线段BC上时,连接AE,求证:AF=AE;
(3)如图3,将△CED绕点C继续逆时针旋转,当平行四边形ABFD为菱形,且△CED在△ABC的下方时,若AB=2,CE=2,求线段AE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名射击运动员中进行射击比赛,两人在相同条件下各射击10次,射击的成绩如图所示.
根据图中信息,回答下列问题:
(1)甲的平均数是___________,乙的中位数是______________;
(2)分别计算甲、乙成绩的方差,并从计算结果来分析,你认为哪位运动员的射击成绩更稳定?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人用如图所示的两个分格均匀的转盘做游戏:分别转动两个转盘,若转盘停止后,指针指向一个数字(若指针恰好停在分格线上,则重转一次),用所指的两个数字作乘积,如果积大于10,那么甲获胜;如果积不大于10,那么乙获胜.清你解决下列问题:
(l)利用树状图(或列表)的方法表示游戏所有可能出现的结果;
(2)求甲、乙两人获胜的概率,并说明游戏是否公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的盒中装有若干个只有颜色不同的红球与白球.
若盒中有个红球和个白球,从中任意摸出两个球恰好是一红一白的概率是多少?请用画树状图或列表的方式说明;
若先从盒中摸出个球,画上记号放回盒中,再进行摸球实验.摸球实验的要求:每次摸球前先搅拌均匀,摸出一个球,记录颜色后放回盒中,再继续,一共做了次,统计结果如下表:
球的颜色 | 无记号 | 有记号 | ||
红色 | 白色 | 红色 | 白色 | |
摸到的次数 |
由上述的摸球实验的结果可估算盒中红球、白球各占总球数的百分之几?
在的条件下估算盒中红球的个数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,CD∥AN.
(1)用尺规作图作出∠MAN的平分线,交CD于点P.(保留作图痕迹)
(2)在(1)的基础上,若∠PAN=15°,AC=2,求点P到AM的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边△ABC的顶点A(1,1),B(3,1),规定把△ABC“先沿x轴翻折,再向左平移1个单位”为一次变换.如图这样的等边△ABC连续经过2018次变换后,顶点C的坐标为_____
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于二次函数y=x2﹣2mx﹣3,有下列说法:
①它的图象与x轴有两个公共点;
②如果当x≤1时y随x的增大而减小,则m=1;
③如果将它的图象向左平移3个单位后过原点,则m=﹣1;
④如果当x=4时的函数值与x=2008时的函数值相等,则当x=2012时的函数值为﹣3.
其中正确的说法是_____.(把你认为正确说法的序号都填上)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=3ax2+2bx+c(a≠0)。
(1)若a=b=1,C=-1。求此抛物线与x轴的交点的坐标;
(2)若a=,c=b+2,其中b是整数。
①直接写出抛物线的顶点坐标(用含有b的代数式表示),并写出顶点纵坐标的最大值;
②若抛物线在-2≤x≤2时,抛物线的最小值是-3,求b的值。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com