精英家教网 > 初中数学 > 题目详情
3.如图,AE∥CF,∠A=∠C.
(1)若∠1=35°,求∠2的度数;
(2)判断AD与BC的位置关系,并说明理由;
(3)若AD平分∠BDF,试说明BC平分∠DBE.

分析 (1)由平行线的性质求得∠BDC=∠1=35°,然后由邻补角的定义求得∠2的度数即可;
(2)由平行线的性质可知:∠A+∠ADC=180°,然后由∵∠A=∠C,再证得∠C+∠ADC=180°,从而可证得BC∥AD;
(3)由AE∥CF可证明∠BDF=∠DBE,由BC∥AD,可证明∠ADB=∠DBC,由角平分线的定义可知,∠ADB=$\frac{1}{2}$∠BDF,从而可证明∠DBC=$\frac{1}{2}$∠EBD.

解答 解:(1)∵AE∥CF,
∴∠BDC=∠1=35°,
又∵∠2+∠BDC=180°,
∴∠2=180°-∠BDC=180°-35°=145°;
(2)BC∥AD.
理由:∵AE∥CF,
∴∠A+∠ADC=180°,
又∵∠A=∠C,
∴∠C+∠ADC=180°,
∴BC∥AD.
(3)∵AE∥CF,
∴∠BDF=∠DBE.
∵BC∥AD,
∴∠ADB=∠DBC.
∵AD平分∠BDF,
∴∠ADB=$\frac{1}{2}$∠BDF,
∴∠DBC=$\frac{1}{2}$∠EBD.
∴BC平分∠DBE.

点评 本题主要考查的是平行线的性质的应用,掌握平行线的性质是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

13.有4张看上去无差别的卡片,上面分别写着2,3,4,5.随机抽取1张后,放回并混合在一起,再随机抽取1张,则第二次抽出的数字能够整除第一次抽出的数字的概率是$\frac{5}{16}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

14.把无理数$\sqrt{17}$,$\sqrt{11}$,$\sqrt{5}$,$-\sqrt{3}$表示在数轴上,在这四个无理数中,被墨迹(如图所示)覆盖住的无理数是$\sqrt{11}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15cm,9只饭碗摞起来的高度为20cm,李老师家的碗橱每格的高度为28cm,则李老师一摞碗最对只能放13只.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应的点之间的距离;这个结论可以推广为|x1-x2|表示在数轴上数x1与数x2对应的点之间的距离;

例1.解方程|x|=2.因为在数轴上到原点的距离为2的点对应的数为±2,所以方程|x|=2的解为x=±2.
例2.解不等式|x-1|>2.在数轴上找出|x-1|=2的解(如图1),因为在数轴上到1对应的点的距离等于2的点对应的数为-1或3,所以方程|x-1|=2的解为x=-1或x=3,因此不等式|x-1|>2的解集为x<-1或x>3.
例3.解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程就是求在数轴上到1和-2对应的点的距离之和等于5的点对应的x的值.因为在数轴上1和-2对应的点的距离为3(如图2),满足方程的x对应的点在1的右边或-2的左边.若x对应的点在1的右边,可得x=2;若x对应的点在-2的左边,可得x=-3,因此方程|x-1|+|x+2|=5的解是x=2或x=-3.
参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为x=1或x=-7;
(2)解不等式:|x-3|≥5;
(3)解不等式:|x-3|+|x+4|≥9.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.计算:(-27)÷2$\frac{1}{4}$×$\frac{4}{9}$÷(-24).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.计算:(-45)÷[(-$\frac{1}{3}$)÷(-$\frac{2}{5}$)].

查看答案和解析>>

科目:初中数学 来源:2016-2017学年福建省泉州市泉港区2016-2017学年八年级3月教学质量检测数学试卷(解析版) 题型:填空题

计算: =________;

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,△ABC三个顶点的坐标分别为A(-2,3),B(-3,1),C(-1,2).
(1)将△ABC向右平移4个单位,画出平移后的△A1B1C1
(2)画出△ABC关于x轴对称的△A2B2C2
(3)将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3
(4)与△A3B3C3成轴对称的图形是△A2B2C2,对称轴是y轴;与△A1B1C1成中心对称的图形是△A3B3C3

查看答案和解析>>

同步练习册答案