精英家教网 > 初中数学 > 题目详情
某工厂生产的某种产品按质量分为个档次,生产第一档次(即最低档次)的产品一天生产件,每件利润元,每提高一个档次,利润每件增加元.
(1)每件利润为元时,此产品质量在第几档次?
(2)由于生产工序不同,此产品每提高一个档次,一天产量减少件.若生产第档的产品一天的总利润为元(其中为正整数,且),求出关于的函数关系式;若生产某档次产品一天的总利润为元,该工厂生产的是第几档次的产品?
(1)每件利润是16元时,此产品的质量档次是在第四档次.
(2)设生产产品的质量档次是在第档次时,一天的利润是(元),
根据题意得:
 
整理得:   
当利润是1080时,即
解得: (不符合题意,舍去)
答:当生产产品的质量档次是在第5档次时,一天的利润为1080元.
(1)依题意可得此产品质量在第4档次.
(2)设生产产品的质量档次是在第x档次时,一天的利润是y,求出y与x的函数解析式,令y=1080,求出x的实际值.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,直线经过点B(,2),且与x轴交于点A.将抛物线沿x轴作左右平移,记平移后的抛物线为C,其顶点为P.

(1)求∠BAO的度数;
(2)抛物线C与y轴交于点E,与直线AB交于两点,其中一个交点为F,当线段EF∥x轴时,求平移后的抛物线C对应的函数关系式;
(3)在抛物线平移过程中,将△PAB沿直线AB翻折得到△DAB,点D能否落在抛物线C上?如能,求出此时抛物线C顶点P的坐标;如不能,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

已知:二次函数,下列说法错误的是(   )
A.当时,的增大而减小
B.若图象与轴有交点,则
C.当时,不等式的解集是
D.若将图象向上平移1个单位,再向左平移3个单位后过点,则

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且
(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF
以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式; ②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、
N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某宾馆有客房间,当每间客房的定价为每天元时,客房会全部住满.当每间客房每天的定价每涨元时,就会有间客房空闲.如果旅客居住客房,宾馆需对每间客房每天支出元的各种费用.
(1)请写出该宾馆每天的利润(元)与每间客房涨价(元)之间的函数关系式;
(2)设某天的利润为元,元的利润是否为该天的最大利润?如果是,请说明理由;如果不是,请求出最大利润,并指出此时客房定价应为多少元?
(3)请回答客房定价在什么范围内宾馆就可获得利润?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,抛物线与轴交于点两点,与轴交于点为直径作过抛物线上一点的切线切点为并与的切线相交于点连结并延长交于点连结

(1)求抛物线所对应的函数关系式及抛物线的顶点坐标;
(2)若四边形的面积为求直线的函数关系式;
(3)抛物线上是否存在点,使得四边形的面积等于的面积?若存在,求出点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

时,下列函数中,函数值随自变量增大而增大的是            (只填写序号)
;②;③;④

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

二次函数的部分对应值如下表:


















二次函数图象的对称轴为      对应的函数值       

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数y=ax2+bx+c的图象如图所示,则下列结论中正确的是(  )
A.a>0,b<0,c>0B.a<0,b<0,c>0
C.a<0,b>0,c<0D.a<0,b>0,c>0

查看答案和解析>>

同步练习册答案