精英家教网 > 初中数学 > 题目详情
已知抛物线y=x2+x+4.
(1)求此抛物线对称轴与横轴交点A的坐标;
(2)设原点为O,在抛物线上任取点P,求三角形OAP的面积的最小值;
(3)若x为整数,在使得y为完全平方数的所有x的值中,设x的最大值为a,最小值为b,次小值为c.(注:一个数如果是另一个整数的完全平方,那么我们就称这个数为完全平方数.)求a、b、c的值.
分析:(1)先求出抛物线的对称轴,再根据x轴上点的坐标特点即可得出A点坐标;
(2)求出抛物线的顶点坐标,再根据三角形的面积公式解答即可;
(3)设x2+x+4=k2(k为非负整数),则有x2+x+4-k2=0,再由x为整数知其△为完全平方数,根据△的值即可求出p的值,进而可得出a、b、c的值.
解答:解:(1)∵抛物线y=x2+x+4的对称轴为x=-
1
2

∴A点坐标为(-
1
2
,0)

(2)当x=-
1
2
时,y=(-
1
2
2+(-
1
2
)+4=
15
4

此函数图象顶点坐标为(-
1
2
3
3
4
),
当P为顶点时,△OAP的面积最小为
1
2
×
1
2
×
15
4
=
15
16


(3)设x2+x+4=k2(k为非负整数),则有x2+x+4-k2=0,
由x为整数知其△为完全平方数(也可以由△的公式直接推出),
即1-4(4-k2)=p2(p为非负整数),
得(2k+p)(2k-p)=15,显然:2k+p>2k-p,
所以
2k+p=15
2k-p=1
2k+p=5
2k-p=3
,解得p=7或p=1,
所以m=
-1+p
2
,得:x1=3,x2=-4,x3=0,x4=-1,
所以a=3,b=-4,c=-1.
点评:本题考查的是二次函数综合题,熟知二次函数的顶点坐标、三角形的面积公式及完全平方数的相关知识是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知抛物线y=x2-8x+c的顶点在x轴上,则c等于(  )
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2+(1-2a)x+a2(a≠0)与x轴交于两点A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范围,并证明A、B两点都在原点O的左侧;
(2)若抛物线与y轴交于点C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知抛物线y=-x2+bx+c与x轴负半轴交于点A,与y轴正半轴交于点B,且OA=OB.
精英家教网(1)求b+c的值;
(2)若点C在抛物线上,且四边形OABC是平行四边形,试求抛物线的解析式;
(3)在(2)的条件下,作∠OBC的角平分线,与抛物线交于点P,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•虹口区一模)如图,在平面直角坐标系xOy中,已知抛物线y=x2+bx+c经过A(0,3),B(1,0)两点,顶点为M.
(1)求b、c的值;
(2)将△OAB绕点B顺时针旋转90°后,点A落到点C的位置,该抛物线沿y轴上下平移后经过点C,求平移后所得抛物线的表达式;
(3)设(2)中平移后所得的抛物线与y轴的交点为A1,顶点为M1,若点P在平移后的抛物线上,且满足△PMM1的面积是△PAA1面积的3倍,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•黔南州)已知抛物线y=x2-x-1与x轴的交点为(m,0),则代数式m2-m+2011的值为(  )

查看答案和解析>>

同步练习册答案