【题目】两个大小不同的等腰直角三角形三角板如图1所示放置,图2是由它抽象出的几何图形,B. C.E在同一条直线上,连结DC.
(1)请在图2中找出与△ABE全等的三角形,并给予证明;
(2)证明:DC⊥BE.
【答案】(1)△ACD≌△ABE,理由见解析;(2)见解析
【解析】
(1)由等腰直角三角形的性质易得AB=AC,AE=AD,∠BAC=∠EAD=90°,然后推出∠BAE=∠CAD,利用SAS判定△ABE≌△ACD;
(2)由全等三角形得∠ACD=∠ABE=45°,易得∠BCD=90°,所以DC⊥BE.
(1)图2中△ACD≌△ABE.
证明:∵△ABC与△AED均为等腰直角三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=90°,
∴∠BAC+∠CAE=∠EAD+∠CAE,
即∠BAE=∠CAD.
在△ABE与△ACD中,
∴△ABE≌△ACD(SAS);
(2)证明:由(1)△ABE≌△ACD,可得∠ACD=∠ABE=45°,
又∵∠ACB=45°,
∴∠BCD=∠ACB+∠ACD=90°,
∴DC⊥BE.
科目:初中数学 来源: 题型:
【题目】如图,在矩形中,点是的中点,的平分线奇交于点,将沿折叠,点恰好落在上点处,延长、交于点,有下列四个结论:
①;②;③;④.
其中,将正确的结论有几个:( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC和△DEB中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是
A.BC=EC,∠B=∠E B.BC=EC,AC=DC
C.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】901班的全体同学根据自己的兴趣爱好参加了六个学生社团(每个学生必须参加且只参加一个),为了了解学生参加社团的情况,学生会对该班参加各个社团的人数进行了统计,绘制成了如图不完整的扇形统计图,已知参加“读书社”的学生有15人,请解答下列问题:
(1)该班的学生共有 名;
(2)若该班参加“吉他社”与“街舞社”的人数相同,请你计算,“吉他社”对应扇形的圆心角的度数;
(3)901班学生甲、乙、丙是“爱心社”的优秀社员,现要从这三名学生中随机选两名学生参加“社区义工”活动,请你用画树状图或列表的方法求出恰好选中甲和乙的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,ABC是等边三角形,点D是线段AC上的一动点,E在BC的延长线上,且BD=DE.
(1)如图,若点D为线段AC的中点,求证:AD=CE;
(2)如图,若点D为线段AC上任意一点,求证:AD=CE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,函数y=(k>0)的图象经过点A(1,2)、B两点,过点A作x轴的垂线,垂足为C,连接AB、BC.若三角形ABC的面积为3,则点B的坐标为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,一架梯子AB斜靠在墙面上,且AB的长为2.5米.
(1)若梯子底端离墙角的距离OB为0.7米,求这个梯子的顶端A距地面有多高?
(2)在(1)的条件下,如果梯子的顶端A下滑0.4米到点A′,那么梯子的底端B在水平方向滑动的距离BB′为多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com