【题目】用适当的方法解下列方程:
(1)x2+2x﹣9999=0
(2)2x2﹣2x﹣1=0.
【答案】
(1)
解:配方,得(x+1)2=10000,
∴x+1=±100,
∴x1=99,x2=﹣101
(2)
解:这里a=2,b=﹣2,c=﹣1,
∵△=4+8=12>0,
∴x= = ,
解得:x1= ,x2=
【解析】(1)方程整理后,利用配方法求出解即可;(2)找出a,b,c的值,代入求根公式求出解即可.
【考点精析】本题主要考查了配方法和公式法的相关知识点,需要掌握左未右已先分离,二系化“1”是其次.一系折半再平方,两边同加没问题.左边分解右合并,直接开方去解题;要用公式解方程,首先化成一般式.调整系数随其后,使其成为最简比.确定参数abc,计算方程判别式.判别式值与零比,有无实根便得知.有实根可套公式,没有实根要告之才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度数;
(2)延长AC至E,使CE=AC,求证:DA=DE.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】先阅读,后解答:
像上述解题过程中,相乘,积不含有二次根式,我们可将这两个式子称为互为有理化因式,上述解题过程也称为分母有理化,
(1)的有理化因式是________;的有理化因式是________.
(2)将下列式子进行分母有理化:①________;②________.
(3)计算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列命题中真命题的个数( )
(1)已知直角三角形面积为4,两直角边的比为1:2,则它的斜边为5;
(2)直角三角形的最大边长为26,最短边长为10,则另一边长为24;
(3)在直角三角形中,两条直角边长为n2﹣1和2n,则斜边长为n2+1;
(4)等腰三角形面积为12,底边上的底为4,则腰长为5.
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,若抛物线L1的顶点A在抛物线L2上,抛物线L2的顶点B也在抛物线L1上(点A与点B不重合),我们定义:这样的两条抛物L1 , L2互为“友好”抛物线,可见一条抛物线的“友好”抛物线可以有多条.
(1)如图2,已知抛物线L3:y=2x2﹣8x+4与y轴交于点C,试求出点C关于该抛物线对称轴对称的点D的坐标;
(2)请求出以点D为顶点的L3的友好抛物线L4的解析式,并指出L3与L4中y同时随x增大而增大的自变量的取值范围;
(3)若抛物y=a1 (x﹣m)2+n的任意一条友好抛物线的解析式为y=a2 (x﹣h)2+k,请写出a1与a2的关系式,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10,将△APB绕点B逆时针旋转一定角度后,可得到△CQB.
(1)求点P与点Q之间的距离;
(2)求∠APB的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,点E,F分别在边BC,CD上,且BE=CF.连接AE,BF,AE与BF交于点G.下列结论错误的是( )
A. AE=BF B. ∠DAE=∠BFC
C. ∠AEB+∠BFC=90° D. AE⊥BF
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知二次函数y=x2+bx+c的图象与x 轴交于A(﹣1,0)、B(3,0)两点,与y 轴交于点C,顶点为D,对称轴为直线l.
(1)求该二次函数的表达式;
(2)若点E 是对称轴l 右侧抛物线上一点,且S△ADE=2S△AOC , 求点E 的坐标;
(3)如图2,连接DC 并延长交x 轴于点F,设P 为线段BF 上一动点(不与B、F 重合),过点P 作PQ∥BD 交直线BC 于点Q,将直线PQ 绕点P 沿顺时针方向旋转45°后,所得的直线交DF 于点R,连接QR.请直接写出当△PQR 与△PFR 相似时点P 的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com