分析 (1)根据旋转的定义可得到△ABF可以由△ADE绕旋转中心 A点,按逆时针方向旋转270度得到;
(2)先利用勾股定理可计算出AE=10,再根据△ABF可以由△ADE绕旋转中心A点,按逆时针方向旋转270度得到AE=AF,∠EAF=90°,然后根据直角三角形的面积公式计算即可.
解答 解:(1)△ABF可以由△ADE绕旋转中心点A,按逆时针方向旋转 270度得到.
故答案为:A,270;
(2)∵四边形ABCD是正方形,BC=8,
∴AD=8,
在Rt△ADE中,DE=6,AD=8,
∴AE=$\sqrt{A{D}^{2}+D{E}^{2}}$=10,
∵△ABF可以由△ADE绕旋转中心 A点,按顺时针方向旋转90 度得到,
∴AE=AF,∠EAF=90°,
∴△AEF的面积=$\frac{1}{2}$AE2=$\frac{1}{2}$×100=50(平方单位).
点评 本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了勾股定理.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com