精英家教网 > 初中数学 > 题目详情
(2013•泉州)如图,直线y=-
3
x+2
3
分别与x、y轴交于点B、C,点A(-2,0),P是直线BC上的动点.
(1)求∠ABC的大小;
(2)求点P的坐标,使∠APO=30°;
(3)在坐标平面内,平移直线BC,试探索:当BC在不同位置时,使∠APO=30°的点P的个数是否保持不变?若不变,指出点P的个数有几个?若改变,指出点P的个数情况,并简要说明理由.
分析:(1)求得B、C的坐标,在直角△BOC中,利用三角函数即可求解;
(2)取AC中点Q,以点Q为圆心,2为半径长画圆⊙Q,⊙Q与直线BC的两个交点,即为所求;
(3)当BC在不同位置时,点P的个数会发生改变,使∠APO=30°的点P的个数情况有四种:1个、2个、3个、4个.如答图2所示.
解答:解:(1)在y=-
3
x+2
3
中,令x=0,得y=2
3

令y=0,得x=2,
∴C(0,2
3
),B(2,0),
∴OC=2
3
,OB=2.
tan∠ABC=
OC
OB
=
2
3
2
=
3

∴∠ABC=60°.

(2)如答图1所示,连接AC.

由(1)知∠ABC=60°,∴BC=2OB=4.
又∵AB=4,∴AB=BC,
∴△ABC为等边三角形,AB=BC=AC=4.
取AC中点Q,以点Q为圆心,2为半径长画圆,与直线BC交于点P1,P2
∵QP1=2,QO=2,∴点P1与点C重合,且⊙Q经过点O.
∴P1(0,2
3
).
∵QA=QO,∠CAB=60°,∴△AOQ为等边三角形.
∴在⊙Q中,AO所对的圆心角∠OQA=60°,
由圆周角定理可知,AO所对的圆周角∠APO=30°,故点P1、P2符合条件.
∵QC=QP2,∠ACB=60°,∴△P2QC为等边三角形.∴P2C=QP=2,∴点P2为BC的中点.
∵B(2,0),C(0,2
3
),∴P2(1,
3
).
综上所述,符合条件的点P坐标为(0,2
3
),(1,
3
).

(3)当BC在不同位置时,点P的个数会发生改变,使∠APO=30°的点P的个数情况有四种:0个、1个、2个、3个、4个.
如答图2所示,

以AO为弦,AO所对的圆心角等于60°的圆共有2个,记为⊙Q,⊙Q′,点Q,Q′关于x轴对称.
∵直线BC与⊙Q,⊙Q′的公共点P都满足∠APO=
1
2
∠AQO=
1
2
∠AQ′O=30°,
∴点P的个数情况如下:
①有1个:直线BC与⊙Q(或⊙Q′)相切;
②有2个:直线BC与⊙Q(或⊙Q′)相交;
③有3个:直线BC与⊙Q(或⊙Q′)相切,同时与⊙Q(或⊙Q′)相交;
直线BC过⊙Q与⊙Q′的一个交点,同时与两圆都相交;
④有4个:直线BC同时与两圆都相交,且不过两圆的交点.
⑤有0个,直线与两个圆都相离时就不存在点P了.
点评:本题是代数几何综合题,考查了坐标平面内直线与圆的位置关系.难点在于第(3)问,所涉及的情形较多,容易遗漏.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•泉州)如图,∠AOB=70°,QC⊥OA于C,QD⊥OB于D,若QC=QD,则∠AOQ=
35
35
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泉州)如图,菱形ABCD的周长为8
5
,对角线AC和BD相交于点O,AC:BD=1:2,则AO:BO=
1:2
1:2
,菱形ABCD的面积S=
16
16

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泉州)如图1,在平面直角坐标系中,正方形OABC的顶点A(-6,0),过点E(-2,0)作EF∥AB,交BO于F;
(1)求EF的长;
(2)过点F作直线l分别与直线AO、直线BC交于点H、G;
①根据上述语句,在图1上画出图形,并证明
OH
BG
=
EO
AE

②过点G作直线GD∥AB,交x轴于点D,以圆O为圆心,OH长为半径在x轴上方作半圆(包括直径两端点),使它与GD有公共点P.如图2所示,当直线l绕点F旋转时,点P也随之运动,证明:
OP
BG
=
1
2
,并通过操作、观察,直接写出BG长度的取值范围(不必说理);
(3)在(2)中,若点M(2,
3
),探索2PO+PM的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泉州)如图,∠AOB=90°,∠BOC=30°,则∠AOC=
60
60
°.

查看答案和解析>>

同步练习册答案