精英家教网 > 初中数学 > 题目详情

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣1,0),对称轴为直线x=1,给出以下结论:
①abc<0;②b2﹣4ac>0;③9a+3b+c>0;④若B( ,y1)、C(2,y2)为函数图象上的两点,则y1>y2
其中正确的结论是(填写代表正确结论的序号)

【答案】①②④
【解析】解:∵抛物线开口向下,∴a<0,
∵抛物线与y轴正半轴相交,
∴c>0,
∵对称轴在y轴右侧,
∴a,b异号,
∴b>0,故①正确;
∵抛物线与x轴交于两个点,
∴△>0,故②正确;
∵x=3时,y=9a+3b+c=0,故③错误;
∵对称轴为x=1,
∴y1>y2 , 故④正确,
所以答案是①②④.
【考点精析】根据题目的已知条件,利用二次函数图象以及系数a、b、c的关系的相关知识可以得到问题的答案,需要掌握二次函数y=ax2+bx+c中,a、b、c的含义:a表示开口方向:a>0时,抛物线开口向上; a<0时,抛物线开口向下b与对称轴有关:对称轴为x=-b/2a;c表示抛物线与y轴的交点坐标:(0,c).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在甲、乙两名同学中选拔一人参加“中华好诗词”大赛,在相同的测试条件下,两人5次测试成绩(单位:分)如下: 甲:79,86,82,85,83
乙:88,79,90,81,72.
回答下列问题:
(1)甲成绩的平均数是 , 乙成绩的平均数是
(2)经计算知S2=6,S2=42.你认为选拔谁参加比赛更合适,说明理由;
(3)如果从甲、乙两人5次的成绩中各随机抽取一次成绩进行分析,求抽到的两个人的成绩都大于80分的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数y=ax2+c(a≠0)的图象过正方形ABOC的三个顶点A、B、C,则ac的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=8cm,BC=16cm,点P从点A出发沿AB边想向点B以2cm/s的速度移动,点Q从点B出发沿BC边向点C以4cm/s的速度移动,如果P、Q同时出发,经过几秒后△PBQ和△ABC相似?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.

(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;
(2)求路灯灯泡的垂直高度GH.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.
(1)若每个房间定价增加40元,则这个宾馆这一天的利润为多少元?
(2)若宾馆某一天获利10640元,则房价定为多少元?
(3)房价定为多少时,宾馆的利润最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线l:y=﹣x,双曲线y= ,在l上取一点A(a,﹣a)(a>0),过A作x轴的垂线交双曲线于点B,过B作y轴的垂线交l于点C,过C作x轴的垂线交双曲线于点D,过D作y轴的垂线交l于点E,此时E与A重合,并得到一个正方形ABCD,若原点O在正方形ABCD的对角线上且分这条对角线为1:2的两条线段,则a的值为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在⊙O中,AB为直径,C为⊙O上一点.

(1)如图1.过点C作⊙O的切线,与AB的延长线相交于点P,若∠CAB=27°,求∠P的大小;
(2)如图2,D为 上一点,且OD经过AC的中点E,连接DC并延长,与AB的延长线相交于点P,若∠CAB=10°,求∠P的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手:

一条直线把平面分成2部分;

两条直线可把平面最多分成4部分;

三条直线可把平面最多分成7部分;

四条直线可把平面最多分成11部分;

……

把上述探究的结果进行整理,列表分析:

直线条数

把平面最多

分成的部分数

写成和的形式

1

2

1+1

2

4

1+1+2

3

7

1+1+2+3

4

11

1+1+2+3+4

(1)当直线条数为5,把平面最多分成____部分,写成和的形式:______;

(2)当直线条数为10,把平面最多分成____部分;

(3)当直线条数为n,把平面最多分成多少部分?

查看答案和解析>>

同步练习册答案