精英家教网 > 初中数学 > 题目详情

【题目】为了探究n条直线能把平面最多分成几部分,我们从最简单的情形入手:

一条直线把平面分成2部分;

两条直线可把平面最多分成4部分;

三条直线可把平面最多分成7部分;

四条直线可把平面最多分成11部分;

……

把上述探究的结果进行整理,列表分析:

直线条数

把平面最多

分成的部分数

写成和的形式

1

2

1+1

2

4

1+1+2

3

7

1+1+2+3

4

11

1+1+2+3+4

(1)当直线条数为5,把平面最多分成____部分,写成和的形式:______;

(2)当直线条数为10,把平面最多分成____部分;

(3)当直线条数为n,把平面最多分成多少部分?

【答案】16; 56. 部分.

【解析】

(1)根据已知探究的结果可以算出当直线条数为5时,把平面最多分成16部分;
(2)通过已知探究结果,写出一般规律,当直线为n条时,把平面最多分成1+1+2+3+…+n,求和即可.

(1)16;1+1+2+3+4+5.

(2)56.根据表中规律知,当直线条数为10,把平面最多分成56部分,1+1+2+3+…+10=56.

(3)当直线条数为n,把平面最多分成1+1+2+3+…+n=部分.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣1,0),对称轴为直线x=1,给出以下结论:
①abc<0;②b2﹣4ac>0;③9a+3b+c>0;④若B( ,y1)、C(2,y2)为函数图象上的两点,则y1>y2
其中正确的结论是(填写代表正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算
(1)计算:﹣22+(﹣ 1+2sin60°﹣|1﹣ |
(2)先化简,再求值:( ﹣x﹣1)÷ ,其中x=﹣2.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点A(﹣2,0),B(2,0),C(3,5).

(1)求过点A,C的直线解析式和过点A,B,C的抛物线的解析式;
(2)求过点A,B及抛物线的顶点D的⊙P的圆心P的坐标;
(3)在抛物线上是否存在点Q,使AQ与⊙P相切,若存在请求出Q点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点C在线段AB,M、N分别是AC、BC的中点.(10)

(1)AC=8,CB=6,求线段MN的长;

(2)若点C为线段AB上任意一点,且满足AC+BC=a,请直接写出线段MN的长;

(3)若点C为线段AB延长线上任意一点,且满足AC-CB=b,求线段MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y1=ax+c和反比例函数y2= 的图象如图所示,则二次函数y3=ax2+bx+c的大致图象是(

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】凯里市某文具店某种型号的计算器每只进价12元,售价20元,多买优惠,优势方法是:凡是一次买10只以上的,每多买一只,所买的全部计算器每只就降价0.1元,例如:某人买18只计算器,于是每只降价0.1×(18﹣10)=0.8(元),因此所买的18只计算器都按每只19.2元的价格购买,但是每只计算器的最低售价为16元.
(1)求一次至少购买多少只计算器,才能以最低价购买?
(2)求写出该文具店一次销售x(x>10)只时,所获利润y(元)与x(只)之间的函数关系式,并写出自变量x的取值范围;
(3)一天,甲顾客购买了46只,乙顾客购买了50只,店主发现卖46只赚的钱反而比卖50只赚的钱多,请你说明发生这一现象的原因;当10<x≤50时,为了获得最大利润,店家一次应卖多少只?这时的售价是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx﹣5(a≠0)与x轴交于点A(﹣5,0)和点B(3,0),与y轴交于点C.

(1)求该抛物线的解析式;
(2)若点E为x轴下方抛物线上的一动点,当SABE=SABC时,求点E的坐标;
(3)在(2)的条件下,抛物线上是否存在点P,使∠BAP=∠CAE?若存在,求出点P的横坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线与x轴只有一个交点A(﹣2,0),与y轴交于点B(0,4).

(1)求抛物线对应的函数解析式;
(2)过点B作平行于x轴的直线交抛物线与点C.
①若点M在抛物线的AB段(不含A、B两点)上,求四边形BMAC面积最大时,点M的坐标;
②在平面直角坐标系内是否存在点P,使以P、A、B、C为顶点的四边形是平行四边形,若存在直接写出所有满足条件的点P的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案