精英家教网 > 初中数学 > 题目详情

【题目】(2016江苏省镇江市) (2016镇江)如图1,一次函数y=kx﹣3(k≠0)的图象与y轴交于点A,与反比例函数x>0)的图象交于点B(4,b).

(1)b= k=

(2)点C是线段AB上的动点(于点AB不重合),过点C且平行于y轴的直线l交这个反比例函数的图象于点D,求OCD面积的最大值;

(3)将(2)中面积取得最大值的OCD沿射线AB方向平移一定的距离,得到OCD,若点O的对应点O落在该反比例函数图象上(如图2),则点D的坐标是

【答案】111;(2;(3D′().

【解析】试题(1)由点B的横坐标利用反比例函数图象上点的坐标特征即可求出b值,进而得出点B的坐标,再将点B的坐标代入一次函数解析式中即可求出k值;

(2)设Cmm﹣3)(0<m<4),则Dm),根据三角形的面积即可得出SOCD关于m的函数关系式,通过配方即可得出OCD面积的最大值;

(3)由(1)(2)可知一次函数的解析式以及点CD的坐标,设点C′(aa﹣3),根据平移的性质找出点O′、D的坐标,由点O在反比例函数图象上即可得出关于a的方程,解方程求出a的值,将其代入点D的坐标中即可得出结论.

试题解析:解:(1)把B(4,b)代入x>0)中得:b==1,∴B(4,1),把B(4,1)代入y=kx﹣3得:1=4k﹣3,解得:k=1,故答案为:1,1;

(2)设Cmm﹣3)(0<m<4),则Dm),∴SOCD===,∵0<m<4,<0,∴m=时,OCD面积取最大值,最大值为

(3)由(1)知一次函数的解析式为y=x﹣3,由(2)知C,﹣)、D).

C′(aa﹣3),则O′(aa),D′(aa+),∵O在反比例函数x>0)的图象上,,解得:a=a=﹣(舍去),经检验a=是方程的解,D的坐标是().

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知,如图,点P是平行四边形ABCD外一点,PEABBC于点EPAPD分别交BC于点MN,点MBE的中点.


1)求证:CN=EN

2)若平行四边形ABCD的面积为12,求PMN的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在正方形ABCD中,对角线ACBD相交于点OAEDF分别是∠OAD与∠ODC的平分线,AE的延长线与DF相交于点G,则下列结论:AGDFEFABABAFAB2EF.其中正确的结论是(  )

A.①②B.③④C.①②③D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为平行四边形,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.

(1)求证:BE=CD;

(2)连接BF,若BF⊥AE,∠BEA=60°,AB=4,求平行四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小轩从如图所示的二次函数y=ax2+bx+ca≠0)的图象中,观察得出了下面五条信息:

ab0a+b+c0b+2c0a﹣2b+4c0

你认为其中正确信息的个数有

A2B3C4D5

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知△ABC内接于⊙O,且ABAC,直径ADBC于点EFOE上的一点,CFBD

1)求证:BECE

2)试判断四边形BFCD的形状,并说明理由;

3)若BC6AD10,求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】水城门位于淀浦河和漕港河三叉口,是环城水系公园淀浦河梦蝶岛区域重要的标志性景观.在课外实践活动中,某校九年级数学兴趣小组决定测量该水城门的高.他们的操作方法如下:如图,先在D处测得点A的仰角为20°,再往水城门的方向前进13米至C处,测得点A的仰角为31°(点DCB在一直线上),求该水城门AB的高.(精确到0.1米)

(参考数据:sin20°≈0.34cos20°≈0.94tan20°≈0.36sin31°≈0.52cos31°≈0.86tan31°≈0.60

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点边上一个动点(不与端点重合)于点沿折叠,点的对应点为为等腰三角形时,则的长为____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,lAlB分别表示A步行与B骑车在同一路上行驶的路程S与时间t的关系.

(1)B出发时与A相距_____千米.

(2)走了一段路后,自行车发生故障进行修理,所用的时间是____小时.

(3)B出发后_____小时与A相遇.

(4)求出A行走的路程S与时间t的函数关系式.(写出计算过程)

(5)请通过计算说明:若B的自行车不发生故障,保持出发时的速度前进,何时与A相遇?

查看答案和解析>>

同步练习册答案