【题目】兴趣小组的同学要测量树的高度.在阳光下,一名同学测得一根长为1米的竹竿的影长为0.4米,同时另一名同学测量树的高度时,发现树的影子不全落在地面上,有一部分落在教学楼的第一级台阶上,测得此影长为0.2米,一级台阶高为0.3米,如图所示,若此时落在地面上的影长为4.4米,求树的高度.
科目:初中数学 来源: 题型:
【题目】如图,某校一幢教学大楼的顶部竖有一块“传承文明,启智求真”的宣传牌CD.小明在山坡的坡脚A处测得宣传牌底部D的仰角为60°,沿山坡向上走到B处测得宣传牌顶部C的仰角为45°.已知山坡AB的坡度i=1:,AB=10米,AE=15米,求这块宣传牌CD的高度.(测角器的高度忽略不计,结果精确到0.1米.参考数据:≈1.414,≈1.732)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对某批乒乓球质量进行随机调查,结果如下表;
随机抽取的乒乓球数 | 10 | 20 | 50 | 100 | 200 | 500 | 1000 |
优等品数 | 7 | 16 | 43 | 81 | 164 | 410 | 820 |
优等频率 | 0.7 | 0.8 | 0.86 | 0.81 | 0.82 | 0.82 |
(1)填表格中的空为_______.
(2)根据上表估计,在这批乒乓球中任取一个球,它为优等品的概率大约是________.(保留两位小数点)
(3)学校需要500个乒乓球的优等品,那么可以推测出最有可能进这批货的乒乓球个数是多少合适?(结果保留整数)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在网格中,每个小正方形的边长都为1,网格中有两个格点、和直线,且长为3.6.
(1)求作点关于直线的对称点.
(2)为直线上一动点,在图中标出使的值最小的点,且求出的最小值?
(3)求周长的最小值?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,有一个圆O和两个正六边形T1,T2. T1的6个顶点都在圆周上,T2的6条边都和圆O相切(我们称T1,T2分别为圆O的内接正六边形和外切正六边形).
(1)设T1,T2的边长分别为a,b,圆O的半径为r,求r:a及r:b的值;
(2)求正六边形T1,T2的面积比S1:S2的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,足球场上守门员在O处开出一记手跑高球,球从地面1.4米的A处抛出(A在y轴上),运动员甲在距O点6米的B处发现球在自己头的正上方达到最高点M,距地面3.2米高,球落地点为C点.
(1)求足球开始抛出到第一次落地时,该抛物线的解析式.
(2)足球第一次落地点C距守门员多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)甲、乙、丙、丁四人做传球游戏:第一次由甲将球随机传给乙、丙、丁中的某一人,从第二次起,每一次都由持球者将球再随机传给其他三人中的某一人.求第二次传球后球回到甲手里的概率.(请用“画树状图”的方式给出分析过程)
(2)如果甲跟另外n(n≥2)个人做(1)中同样的游戏,那么,第三次传球后球回到甲手里的概率是 (请直接写出结果).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】美丽的黄河宛如一条玉带穿城而过,沿河两岸的滨河路风情线是兰州最美的景观之一.数学课外实践活动中,小林在南滨河路上的A,B两点处,利用测角仪分别对北岸的一观景亭D进行了测量.如图,测得∠DAC=45°,∠DBC=65°.若AB=132米,求观景亭D到南滨河路AC的距离(结果精确到1米,参考数据:sin65°≈0.91,cos65°≈0.42,tan65°≈2.14).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com