精英家教网 > 初中数学 > 题目详情
如图,已知在四边形ABCD中,∠B=∠D=90°,AE、CF分别是∠DAB及∠DCB的平分线.则AE与FC有什么关系?请说明理由。
AE∥CF

试题分析:由四边形的内角和推出∠DAB与∠DCB互补,由角平分线推出∠DAE与∠DCF互余,再由∠DFC与∠DCF互余推出∠DFC=∠DAE,即可证得结论.
∵∠B=∠D=90°,∠BAD+∠B+∠BCD+∠D=360°,
∴∠DAB+∠DCB=180°,
∵AE、CF分别是∠DAB及∠DCB的平分线、
∴∠DAE+∠DCF=90°,
又∠DFC+∠DCF=90°,
∴∠DFC=∠DAE,
∴AE∥CF.
点评:平行线的判定和性质是初中数学的重点,贯穿于整个初中数学的学习,是中考中极为重要的知识点,一般难度不大,需熟练掌握.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

已知:如图,在平面直角坐标系O中,矩形OABC的边OA在轴的正半轴上,OC在轴的正半轴上,OA=2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.

(1)求过点E、D、C的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G.如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

在□ABCD中,∠A∶∠B∶∠C=2∶3∶2,则∠D的度数为( )
A.36°B.60°C.72°D.108°

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在矩形ABCD中,DE平分∠ADC交BC于点E,EF⊥AD交AD于点F,若EF=3,AE=5,则AD=     

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

下列矩形都是由大小不等的正方形按照一定规律组成,其中,第①个矩形的周长为6,第②个矩形的周长为10,第③个矩形的周长为16,…则第⑥个矩形的周长为(    )

①      ②      ③         ④
A.42B.46 C.68D.72

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知梯形的中位线长是,下底长是,则它的上底长是      

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

在□ABCD中,已知,则用向量表示向量         

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,把一个长方形纸片沿折叠后,点DC分别落在D′,C′的位置.若=70°,则= _________。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

【问题】如图,在正方形ABCD内有一点P,PA=,PB=,PC=1,求∠BPC的度数.
分析根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图),然后连结PP′.
解决问题请你通过计算求出图17-2中∠BPC的度数;
【类比研究】如图,若在正六边形ABCDEF内有一点P,且PA=,PB=4,PC=2.
(1)∠BPC的度数为       ;(2)直接写出正六边形ABCDEF的边长为         

查看答案和解析>>

同步练习册答案