【题目】如图,四边形ABCD为圆内接四边形,对角线AC、BD交于点E,延长DA、CB交于点F.
(1)求证:△FBD∽△FAC;
(2)如果BD平分∠ADC,BD=5,BC=2,求DE的长;
(3)如果∠CAD=60°,DC=DE,求证:AE=AF.
【答案】(1)见解析;(2);(3)见解析
【解析】
(1)可得出∠ADB=∠ACB,∠AFC=∠BFD,则结论得证;
(2)证明△BEC∽△BCD,可得,可求出BE长,则DE可求出;
(3)根据圆内接四边形的性质和三角形的内角和定理进行证明AB=AF;根据等腰三角形的判定与性质和圆周角定理可证明AE=AB,则结论得出.
(1)证明:∵∠ADB=∠ACB,∠AFC=∠BFD,
∴△FBD∽△FAC;
(2)解:∵BD平分∠ADC,
∴∠ADB=∠BDC,
∵∠ADB=∠ACB,
∴∠ACB=∠BDC,
∵∠EBC=∠CBD,
∴△BEC∽△BCD,
∴,
∴,
∴BE=,
∴DE=BD﹣BE=5﹣=;
(3)证明:∵∠CAD=60°,
∴∠CBD=60°,∠ACD=∠ABD,
∵DC=DE,
∴∠ACD=∠DEC,
∵∠ABC+∠ADC=∠ABC+∠ABF=180°,
∴∠FBD=180°,
∴∠ABF=∠ADC=120°
=120°﹣∠ACD
=120°﹣∠DEC
=120°﹣(60°+∠ADE)
=60°﹣∠ADE,
而∠F=60°﹣∠ACF,
∵∠ACF=∠ADE,
∴∠ABF=∠F,
∴AB=AF.
∵四边形ABCD内接于圆,
∴∠ABD=∠ACD,
又∵DE=DC,
∴∠DCE=∠DEC=∠AEB,
∴∠ABD=∠AEB,
∴AB=AE.
∴AE=AF.
科目:初中数学 来源: 题型:
【题目】“每天锻炼一小时,健康生活一辈子”,学校准备从小明和小亮2人中随机选拔一人当“阳光大课间”领操员,体育老师设计的游戏规则是:将四张扑克牌(方块2、黑桃4、黑桃5、梅花5)的牌面如图1,扑克牌洗匀后,如图2背面朝上放置在桌面上.小亮和小明两人各抽取一张扑克牌,两张牌面数字之和为奇数时,小亮当选;否则小明当选.
(1)请用树状图或列表法求出所有可能的结果;
(2)请问这个游戏规则公平吗?并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB<BC.
(1)利用尺规作图,在AD边上确定点E,使点E到边AB,BC的距离相等(不写作法,保留作图痕迹);
(2)若BC=8,CD=5,则DE= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形中,点、点分别在轴、轴上,且. 将绕点顺时针旋转使斜边落在轴上,得到第一个;将绕点顺时针旋转使边落在轴上,得到第二个;将绕点顺时针旋转使边落在轴上,得到第三个;……顺次这样做下去,得到的第2019个三角形落在轴上的边的右侧顶点所走的路程为___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB,
(1)求抛物线的解析式;
(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,在中,,点为的中点,以为一边作正方形,点恰好与点重合,则线段与的数量关系为______________;
(2)拓展探究
在(1)的条件下,如果正方形绕点旋转,连接,线段与的数量关系有无变化?请仅就图2的情形进行说明;
(3)问题解决.
当正方形旋转到三点共线时,直接写出线段的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有四张反面完全相同的纸牌,其正面分别画有四个不同的几何图形,将四张纸牌洗匀正面朝下随机放在桌面上.
(1)从四张纸牌中随机摸出一张,摸出的牌面图形是中心对称图形的概率是 .
(2)小明和小亮约定做一个游戏,其规则为:先由小明随机摸出一张,不放回.再由小亮从剩下的纸牌中随机摸出一张,若摸出的两张牌面图形既是轴对称图形又是中心对称图形,则小亮获胜,否则小明获胜.这个游戏公平吗?请用列表法(或画树状图)说明理由.(纸牌用表示)若不公平,请你帮忙修改一下游戏规则,使游戏公平.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图中,,P是斜边AC上一个动点,以即为直径作交BC于点D,与AC的另一个交点E,连接DE.
(1)当时,
①若,求的度数;
②求证;
(2)当,时,
①是含存在点P,使得是等腰三角形,若存在求出所有符合条件的CP的长;
②以D为端点过P作射线DH,作点O关于DE的对称点Q恰好落在内,则CP的取值范围为________.(直接写出结果)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com