【题目】平面直角坐标系xOy中,点A、B分别在函数y1=(x>0)与y2=(x<0)的图象上,A、B的横坐标分别为a、b.
(1)若AB∥x轴,求△OAB的面积;
(2)若△OAB是以AB为底边的等腰三角形,且a+b0,求ab的值;
(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD边与函数y1=(x>0)的图象都有交点,请说明理由.
【答案】(1)S△OAB=4;(2)ab=﹣4;(3)见解析.
【解析】
(1)如图1,AB交y轴于C,由于AB∥x轴,根据k的几何意义得到S△OAC=2,S△OBC=2,所以S△OAB=S△OAC+S△OBC=4;
(2)根据函数图象上点的坐标特征得A、B的纵坐标分别为,根据两点间的距离公式得到,则利用等腰三角形的性质得到a2+()2=b2+(﹣)2,变形得到(a+b)(a﹣b)(1﹣)=0,由于a+b≠0,a>0,b<0,所以1﹣=0,易得ab=﹣4;
(3)由于a≥4,AC=3,则可判断直线CD在y轴的右侧,直线CD与函数y1=(x>0)的图象一定有交点,设直线CD与函数y1=(x>0)的图象交点为F,由于A点坐标为(a,),正方形ACDE的边长为3,则得到C点坐标为(a﹣3,),F点的坐标为(a﹣3,),所以FC=,然后比较FC与3的大小,由于3﹣FC=3﹣,而a≥4,所以3﹣FC≥0,于是可判断点F在线段DC上.
解:(1)如图,AB交y轴于P,
∵AB∥x轴,
∴S△OAC=×|4|=2,S△OBC=×|﹣4|=2,
∴S△OAB=S△OAC+S△OBC=4;
(2)∵A、B的横坐标分别为a、b,
∴OA2=a2+()2,OB2=b2+(﹣)2,
∵△OAB是以AB为底边的等腰三角形,
∴OA=OB,
∴a2+()2=b2+(﹣)2
∴(a+b)(a﹣b)(1﹣)=0,
∵a+b≠0,a>0,b<0,
∴1﹣=0,
∴ab=﹣4
(3)∵a≥4,而AC=3,
∴直线CD在y轴的右侧,直线CD与函数y1=(x>0)的图象一定有交点,
设直线CD与函数y1=(x>0)的图象交点为F,如图,
∵A点坐标为(a,),正方形ACDE的边长为3,
∴C点坐标为(a﹣3,),
∴F点的坐标为(a﹣3,),
∴FC=﹣
∵3﹣FC=3﹣,
而a≥4,
∴3﹣FC≥0,即FC≤3,
∵CD=3,
∴点F在线段DC上,
即对大于或等于4的任意实数a,CD边与函数y1=(x>0)的图象都有交点
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,平行四边形ABCD的边AD经过O点,A、C、D三点都在反比例函数的图像上,B点在轴的负半轴上,延长CD交轴于点E,连接CO.
若C(1,2),D(2,1),则为_______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】你吃过拉面吗?实际上在做拉面的过程中就渗透着数学知识:一定体积的面团做成拉面,面条的总长度y(m)四面条的粗细(横截面积)S(mm2)的反比例函数,其图象如图所示.
(1)写出y与S的函数关系式;
(2)求当面条粗1.6 mm2时,面条的总长度是多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,正比例函数y=kx的图象与反比例函数的图象有一个交点A(m,2).
(1)求m的值及正比例函数y=kx的解析式;
(2)试判断点B(2,3)是否在正比例函数图象上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在长方形中,,.延长到点,使,连接,动点从点出发,以每秒2个单位的速度沿向终点运动,设点的运动时间为秒,当的值为___________时,和全等.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】由一些大小相同的小正方体组成的简单几何体的主视图和俯视图如图29-29所示.
(1)请你画出这个几何体的一种左视图.
(2)若组成这个几何体的小正方体的块数为n,请你写出n的所有可能值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com