【题目】如图,在平面直角坐标系中,抛物线y =ax2+bx﹣3(a≠0)与x轴交于点A(﹣2,0)、B(4,0)两点,与y轴交于点C.点P、Q分别是AB、BC上的动点,当点P从A点出发,在线段AB上以每秒3个单位长度的速度向B点运动,同时点Q从B点出发,在线段BC上以每秒1个单位长度的速度向C点运动,其中一个点到达终点时,另一个点也停止运动.设P、Q同时运动的时间为t秒(0<t<2).
(1)求抛物线的表达式;
(2)设△PBQ的面积为S ,当t为何值时,△PBQ的面积最大,最大面积是多少?
(3)当t为何值时,△PBQ是等腰三角形?
【答案】(1)y=x2x3;(2)当t=1时,S△PBQ最大=.;(3)当t的值是秒或秒或秒时,△CPQ为等腰三角形.
【解析】(1)把点A、B的坐标分别代入抛物线解析式,列出关于系数a、b的解析式,通过解方程组求得它们的值;
(2)设运动时间为t秒.利用三角形的面积公式列出S△PBQ与t的函数关系式S△PBQ=-(t-1)2+.利用二次函数的图象性质进行解答;
(3)分为三种情况:①当PB=BQ,②当PQ=BQ,③当PQ=PB进行讨论,
(1)把点A(2,0)、B(4,0)分别代入y=ax2+bx3(a≠0),得
解得a=,b=
所以该抛物线的表达式式为:y=x2x3
(2)由题意可知:AP=3t,BQ=t.
∴PB=63t.
由题意得,点C的坐标为(0,3).
在Rt△BOC中,BC=.
如图1,过点Q作QH⊥AB于点H.
∴QH∥CO,
∴△BHQ∽△BOC
∴,即
∴HQ=t.
∴S△PBQ=PBHQ= (63t) t=t2+
t= (t1)2+.
∴当t=1时,S△PBQ最大=. ()
答:运动1秒使△PBQ的面积最大,最大面积是;
(3)分为三种情况:①当PB=BQ时,即63t=t,解得t=
当t=秒,△BPQ是等腰三角形。
②当PQ=BQ时,
∵QH⊥PB,
∴PH=BH=(63t)=3t,
∵cos∠HBQ=
∴,解得t=
∴当t=秒时,△BPQ是等腰三角形,
③当PQ=PB时,如图,过P点作PD⊥BC
∵PD⊥BC,
∴BD=QD=BQ=t,
∵cos∠HBQ=
∴,解得t=
∴当t=秒时,△CPQ是等腰三角形,
即当△CPQ为等腰三角形时,t的值是秒或秒或秒.
科目:初中数学 来源: 题型:
【题目】“五一”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游。
[来
根据以上信息,解答下列问题:
(1)设租车时间为小时,租用甲公司的车所需费用为元,租用乙公司的车所需费用为元,分别求出,关于的函数表达式;
(2)请你帮助小明计算并选择哪个出游方案合算。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小丽和小华想利用摸球游戏决定谁去参加市里举办的书法比赛,游戏规则是:在一个不透明的袋子里装有除数字外完全相同的4个小球,上面分别标有数字2,3,4,5.一人先从袋中随机摸出一个小球,另一人再从袋中剩下的3个小球中随机摸出一个小球.若摸出的两个小球上的数字和为偶数,则小丽去参赛;否则小华去参赛.
(1)用列表法或画树状图法,求小丽参赛的概率.
(2)你认为这个游戏公平吗?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学课上,张老师举了以下的例题:
例1等腰三角形ABC中,,求的度数.(答案:35°)
例2等腰三角形ABC中,,求的度数.(答案:40°或70°或100°)
张老师启发同学们编题,小刚编了如下一题:
(1)等腰三角形ABC中,,则的度数为______;(2)小刚发现,的度数不同,得到的度数的个数也可能不同.如果在等腰三角形ABC中,设,当有三个不同的度数时,x的取值范围是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图的正方形网格中,每一个小正方形的边长为1.格点三角形(顶点是网格线交点的三角形)的顶点的坐标分别是.
(1)请在图中的网格平面内建立平面直角坐标系;
(2)请画出关于轴对称的;
(3)请在轴上求作一点,使的周长最小,并写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l:y=x+1交x轴于点B,交y轴于点A,过点A作AB1⊥AB交x轴于点B1,过点B1作B1A1⊥x轴交直线l于点A2…依次作下去,则点Bn的横坐标为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2﹣9ax+18a的图象与x轴交于A,B两点(A在B的左侧),图象的顶点为C,直线AC交y轴于点D.
(1)连接BD,若∠BDO=∠CAB,求这个二次函数的表达式;
(2)是否存在以原点O为对称轴的矩形CDEF?若存在,求出这个二次函数的表达式,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com