【题目】如下图,已知⊙O的直径为AB,AC⊥AB于点A, BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.下面四个结论:①ED是⊙O的切线;②BC=2OE③△BOD为等边三角形;④△EOD ∽ △CAD,正确的是( )
A. ①② B. ②④ C. ①②④ D. ①②③④
【答案】C
【解析】解:如图,连接OD.∵AC⊥AB,∴∠BAC=90°,即∠OAE=90°.在△AOE与△DOE中,∵OA=OD,AE=DE,OE=OE,∴△AOE≌△DOE(SSS),∴∠OAE=∠ODE=90°,即OD⊥ED.又∵OD是⊙O的半径,∴ED是⊙O的切线.故①正确;
∵△AOE≌△DOE,∴∠AOE=∠DOE,∵OB=OD,∴∠B=∠BDO,∵∠B+∠BDO=∠AOE+∠DOE,∴∠B=∠AOE,∴OE∥BC,∵AO=OB,∴OE是△BAC的中位线,∴BC=2OE,故②正确;
∵OE∥BC,∴∠AEO=∠C.∵△AOE≌△DOE,∴∠DEO=∠C,∠ODE=∠OAE=90°,∴∠ODE=ADC=90°,∴△EOD∽△CAD,∴正确的①②④.故选C.
科目:初中数学 来源: 题型:
【题目】如图所示,以下几种说法中:①和是同位角;②和是同位角;③和是内错角;④和是同旁内角;⑤和是同位角;⑥和是同位角;正确的个数是( )
A.3B.4C.5D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知M=(a+24)x3﹣10x2+10x+5是关于x的二次多项式,且二次项系数和一次项系数分别为b和c,在数轴上A、B、C三点所对应的数分别是a、b、c.
(1)则a= ,b= ,c= .
(2)有一动点P从点A出发,以每秒4个单位的速度向右运动,多少秒后,P到A、B、C的距离和为40个单位?
(3)在(2)的条件下,当点P移动到点B时立即掉头,速度不变,同时点T和点Q分别从点A和点C出发,向左运动,点T的速度1个单位/秒,点Q的速度5个单位/秒,设点P、Q、T所对应的数分别是xP、xQ、xT,点Q出发的时间为t,当<t<时,求2|xP﹣xT|+|xT﹣xQ|+2|xQ﹣xP|的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=x2+x﹣的图象与x轴交于点 A,B,交 y 轴于点 C,抛物线的顶点为 D.
(1)求抛物线顶点 D 的坐标以及直线 AC 的函数表达式;
(2)点 P 是抛物线上一点,且点P在直线 AC 下方,点 E 在抛物线对称轴上,当△BCE 的周长最小时,求△PCE 面积的最大值以及此时点 P 的坐标;
(3)在(2)的条件下,过点 P 且平行于 AC 的直线分别交x轴于点 M,交 y 轴于点N,把抛物线y=x2+x﹣沿对称轴上下平移,平移后抛物线的顶点为 D',在平移的过程中,是否存在点 D',使得点 D',M,N 三点构成的三角形为直角三角形,若存在,直接写出点 D'的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于任意两个实数对(a,b)和(c,d),规定:当且仅当a=c且b=d时, (a,b)=(c,d).定义运算“”:(a,b)(c,d)=(ac-bd,ad+bc).若(1,2)(p,3)=(q,q),则pq=___________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论: ① c=0;②该抛物线的对称轴是直线x=﹣1;③当x=1时,y=2a;④am+bm+a>0(m≠﹣1);⑤设A(100,y),B(﹣100,y)在该抛物线上,则y>y.其中正确的结论有___________ .(写出所有正确结论的序号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)把数轴补充完整.
(2)在数轴上表示下列各数:3,﹣4,﹣(﹣1.5),﹣|﹣2|.
(3)用“<”连接起来._____________
(4)﹣|﹣2|与﹣4之间的距离是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BI,CI分别平分∠ABC,∠ACB,过I点作DE∥BC,交AB于D,交AC于E,给出下列结论:①△DBI是等腰三角形;②△ACI是等腰三角形;③AI平分∠BAC;④△ADE周长等于AB+AC.其中正确的是( )
A. ①②③ B. ②③④ C. ①③④ D. ①②④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】保护环境,让我们从垃圾分类做起.某区环保部门为了提高宣传实效,抽样调查了部分居民小区一段时间内生活垃圾的分类情况(如图1),进行整理后,绘制了如下两幅尚不完整的统计图:
根据图表解答下列问题:
(1)请将图2﹣条形统计图补充完整;
(2)在图3﹣扇形统计图中,求出“D”部分所对应的圆心角等于 度;
(3)在抽样数据中,产生的有害垃圾共有 吨;
(4)调查发现,在可回收物中废纸垃圾约占,若每回收1吨废纸可再造好红外线0.85吨.假设该城市每月产生的生活垃圾为10000吨,且全部分类处理,那么每月回收的废纸可再造好纸多少吨?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com