精英家教网 > 初中数学 > 题目详情

【题目】如图,已知二次函数y=x2+x的图象与x轴交于点 AB,交 y 轴于点 C,抛物线的顶点为 D

(1)求抛物线顶点 D 的坐标以及直线 AC 的函数表达式;

(2)点 P 是抛物线上一点,且点P在直线 AC 下方,点 E 在抛物线对称轴上,当△BCE 的周长最小时,求△PCE 面积的最大值以及此时点 P 的坐标;

3)在(2)的条件下,过点 P 且平行于 AC 的直线分别交x轴于点 M,交 y 轴于点N,把抛物线y=x2+x沿对称轴上下平移,平移后抛物线的顶点为 D',在平移的过程中,是否存在点 D',使得点 D'MN 三点构成的三角形为直角三角形,若存在,直接写出点 D'的坐标;若不存在,请说明理由.

【答案】(1)顶点D的坐标为(﹣1,﹣),直线AC的解析式为y=﹣x﹣;(2)当t=﹣时,△PEC的面积最大,最大值是,此时,点P的坐标为(﹣,﹣);(3)存在点 D',使得点 D',M,N 三点构成的三角形为直角三角形,D′点的坐标为(﹣1, )(﹣1, ),(﹣1, ),(﹣1, ).

【解析】试题分析:(1)根据配方法,可得顶点坐标,根据自变量与函数值的对应关系,可得答案,根据待定系数法,可得函数解析式;
(2)根据线段垂直平分线的性质,线段的性质,可得E的坐标,根据平行于y的直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得PQ,根据面积的和差,可得二次函数,根据二次函数的性质,可得答案;
(3)根据勾股定理,可得关于d的方程,根据解方程,可得答案.

试题解析:

1y=x2+x=x+12,顶点D的坐标为(﹣1),

y=0时, x2+x=0,解得x1=3x2=1

A(﹣3,0),B(1,0).

x=0时,y=

C0),

∴直线AC的解析式为y=x

(2)∵△CPE得周长为BC+CE+BE,其中BC的长是固定的,

∴周长取得最小值就是BE+CE取得最小值,

∵点E是抛物线对称轴上一点,

BE=AE,

BE+CE=AE+CE,

BE+CE的最小值是AC,点EAC与对称轴的交点.

∴点E为(﹣1).

∵点P是抛物线上x轴下方一点,设点P为(t t2+t).且t2+t0

过点PQPx轴交直线AC于点Q,点Q坐标为(tt).

当点p在对称轴左侧时,SPCE=SPCQSPEQ=PQ0tPQ1t=PQ

当点P在对称轴的右侧时,SPCE=SPCQ+SPEQ=PQ0t+PQ[t1]= PQ

PQ=tt2+t=t2t

SPCE=PQ=t2t=t+2+

t=时,△PEC的面积最大,最大值是,此时,点P的坐标为(﹣);

3)经过点P且平行于AC的直线MN的解析式为y=x

x=0时,y=,即N0),当y=0时,x=,即M0),

设点D′的坐标为(﹣1d),则MN2=2+2=MD′2=[1]2+d2=+d2ND′2=12+d2=d2+d+

当∠MD′N=90°时,MD′2+ND′2=MN2,即+d2+d2+d+=

整理,得4d2+7d17=0,解得d1=d2=

当∠NMD′=90°时,MD′2=ND′2+MN2,即+d2=d2+d++

化简,得d=,解得d=

当∠NMD′90°时,ND′2=MD′2+MN2 d2+d+=+d2+

化简,得d=,解得d=

∴存在点 D',使得点 D'MN 三点构成的三角形为直角三角形,D′点的坐标为(﹣1 )(1 ),(1 )(1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】计算:

1

2

3

4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】骰子是一种特别的数字立方体(见下图),它符合规则:相对两面的点数之和总是7,下面四幅图中可以折成符合规则的骰子的是( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】国庆期间,王老师计划组织朋友去晋西北游览两日.经了解,现有甲、乙两家旅行社针对组团两日游的游客报价均为每人500元,且提供的服务完全相同.甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按八折收费.假设组团参加甲、乙两家旅行社两日游的人数均为.

1)请列式表示甲、乙两家旅行社收取组团两日游的总费用;

2)若王老师组团参加两日游的人数共有30人,请你通过计算,在甲、乙两家旅行社中,帮助王老师选择收取总费用较少的一家.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一快递员需要在规定时间内开车将快递送到某地,若快递员开车每分钟行驶1.2,就早到10分钟;若快递员开车每分钟行驶0.8,就要迟到5分钟.试求出规定时间及快递员所行驶的总路程.

小明和小新在解答时先设出未知数,然后列出方程如下:

①,②,其中方程①由小明所列,方程②由小新所列.

1)小明所设表示

小新所设表示 .

2)请选小明或小新的方法写出完整的解答过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如果一个分式的分子或分母可以因式分解,且这个分式不可约分,那么我们称这

个分式为和谐分式”.

1)下列分式:. 其中是和谐分式 (填写序号即可)

2)若为正整数,且和谐分式,请写出的值;

3)在化简时,

小东和小强分别进行了如下三步变形:

小东:

小强:

显然,小强利用了其中的和谐分式, 第三步所得结果比小东的结果简单,

原因是:

请你接着小强的方法完成化简.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如下图,已知⊙O的直径为ABACAB于点A, BC与⊙O相交于点D,在AC上取一点E使得ED=EA下面四个结论:①ED是⊙O的切线BC=2OE③△BOD为等边三角形④△EOD CAD正确的是(

A. ①② B. ②④ C. ①②④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】数学课上,某班同学用天平和一些物品(如图)探究了等式的基本性质.该班科技创新小组的同学提出问题:仅用一架天平和一个10克的砝码能否测量出乒乓球和一次性纸杯的质量?科技创新小组的同学找来足够多的乒乓球和某种一次性纸杯(假设每个乒乓球的质量相同,每个纸杯的质量也相同),经过多次试验得到以下记录:

记录

天平左边

天平右边

状态

记录一

6个乒乓球,

110克的砝码

14个一次性纸杯

平衡

记录二

8个乒乓球

7个一次性纸杯,

110克的砝码

平衡

请算一算,一个乒乓球的质量是多少克?一个这种一次性纸杯的质量是多少克?

解:(1)设一个乒乓球的质量是克,则一个这种一次性纸杯的质量是______克;(用含的代数式表示)

2)列一元一次方程求一个乒乓球的质量,并求出一个这种一次性纸杯的质量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)克糖水中有克糖(>0),则糖的质量与糖水的质量比为_______;若再添加克糖,并全部溶解(>0),则糖的质量与糖水的质量比为__________;生活常识告诉我们,添加的糖完全溶解后,糖水会更甜,因此我们可以猜想出以上两个质量比之间的大小关系是______________

(2)我们的猜想正确吗?请你证明这个猜想。

查看答案和解析>>

同步练习册答案