分析 根据线段垂直平分线的性质可知AB=OB,由此推出△ABC的周长=OC+AC,设OC=a,AC=b,根据勾股定理和函数解析式即可得到关于a、b的方程组,解之即可求出△ABC的周长.
解答 解:∵OA的垂直平分线交OC于B,
∴AB=OB,
∴△ABC的周长=OC+AC,
设OC=a,AC=b,
则:$\left\{\begin{array}{l}{ab=4}\\{{a}^{2}+{b}^{2}=16}\end{array}\right.$,
解得 a+b=2$\sqrt{6}$,即△ABC的周长=OC+AC=2$\sqrt{6}$.
故答案是:2$\sqrt{6}$.
点评 本题考查反比例函数图象性质和线段中垂线性质,以及勾股定理的综合应用,关键是一个转换思想,即把求△ABC的周长转换成求OC+AC即可解决问题.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com