【题目】已知A(-2,1)、B(n,-2)是一次函数y=kx+b的图象与反比例函数y=的图象的两个交点.
(1) 求此反比例函数和一次函数的解析式;
(2) 根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.
【答案】(1)y=- ; y= -x-1; (2)当 0<x<1 或 x<-2 时,一次函数的值大于反比例函数的值.
【解析】
(1)把A(-2,1)代入反比例函数求出m值即可得反比例函数解析式,把B(n,-2)代入反比例函数解析式可得n值,把A、B两点坐标代入一次函数y=kx+b列方程组即可求出a、b的值,可得一次函数解析式;(2)观察图象得到当0<x<1 或 x<-2 时,一次函数的图象都在反比例函数图象的上方,即一次函数的值大于反比例函数的值.
把A(-2,1)代入y=得m=1(-2)=-2,
∴反比例函数解析式为:y=,
把B(n,-2)代入y=得:-2=,
解得:n=1,
∴B点坐标为(1,-2)
把A、B两点坐标代入y=kx+b得,
解得:k=-1,b=-1,
∴一次函数解析式为:y=-x-1,
(2)如图:观察图象得到当0<x<1 或 x<-2 时,一次函数的图象都在反比例函数图象的上方,即一次函数的值大于反比例函数的值.
科目:初中数学 来源: 题型:
【题目】(1)如图①,在四边形ABCD中,AB∥DC,E是BC的中点,若AE是∠BAD的平分线,求证:AD=DC+AB,
(2)如图②,在四边形ABCD中,AB∥DC,F是DC延长线上一点,连接AF,E是BC的中点,若AE是∠BAF的平分线,求证:AB=AF+CF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形网格中的△ABC,若小方格边长为1,格点△ABC(顶点是网格线交点的三角形)的顶点A,C的坐标分别为(﹣1,1),(0,﹣2),请你根据所学的知识.
(1)在如图所示的网格平面内作出平面直角坐标系;
(2)作出△ABC关于y轴对称的三角形A1B1C1;
(3)判断△ABC的形状,并求出△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D是射线CB上的一动点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE= 度;
(2)设∠BAC= ,∠DCE= .
① 如图2,当点D在线段CB上,∠BAC≠90°时,请你探究与之间的数量关系,并证明你的结论;
② 如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时与之间的数量关系(不需证明).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E在正方形ABCD的边CD上,把△ADE绕点A顺时针旋转90°至△ABF位置,如果AB= ,∠EAD=30°,那么点E与点F之间的距离等于 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小青和小白在一起玩数学游戏,他们约定:在一个不透明的布袋中有四个完全相同的小球,把它们分别标号为1,2,3,4,小青随机摸出一个小球记下数字后放回去,小白再随机摸出一个小球记下数字.
(1)求小青和小白摸出小球标号相同的概率;
(2)如果小青和小白按照上述方式继续进行游戏,并且把他们所摸出的两个数分别看作点的横坐标和纵坐标,记作(小青,小白),当点在直线y=x+1上时,小青胜;反之则小白胜,请判断这个游戏对双方是否公平,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,△ABC中,BO,CO分别是∠ABC和∠ACB的平分线,过O点的直线分别交AB、AC于点D、E,且DE∥BC.若AB=6 cm,AC=8 cm,则△ADE的周长为__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点A(a,3),点P在坐标轴上,若使得△AOP是等腰三角形的点P恰有6个,则满足条件的a值有( )
A. 2个 B. 3个 C. 4个 D. 5个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为( )
A. 8 B. 16 C. 24 D. 32
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com