精英家教网 > 初中数学 > 题目详情
(2013•江东区模拟)如图,点A(3,m),B(-2,n)在反比例函数y=
6x
的图象上,直线y=kx经过点C(-2,2),点P是直线y=kx上任意一点.
(1)求点A、B的坐标和直线y=kx的解析式;
(2)求证:△PAC≌△PBC;
(3)若点Q(0,6),当△APQ周长最小时,求点P的坐标.
分析:(1)根据点A(3,m),B(-2,n)在反比例函数y=
6
x
的图象上即可求出点A、B的坐标,由直线y=kx经过C(-2,2),即可求出y=kx的解析式;
(2)设AC与y轴相交于点D,则CD⊥OD,且CD=OD,再证明∠ACP=∠BCP=135°,结合CP=CP,AC=BC=5即可求出两三角形全等;
(3)当B、P、Q三点在同一直线上时,△APQ的周长最小,设直线PQ的解析式为y=kx+b,把B(-2,-3)、Q(0,6)代入,求出解析式,联立两解析式,求出P点坐标.
解答:解:(1)∵A(3,m),B(-2,n)在双曲线y=
6
x
上,
∴A(3,2),B(-2,-3),
∵直线y=kx经过C(-2,2),
∴y=-x,

(2)设AC与y轴相交于点D,则CD⊥OD,且CD=OD,
∴∠OCD=45°,同理∠BCO=45°,
∴∠ACO=∠BCO=45°,
∴∠ACP=∠BCP=135°,
又∵CP=CP,AC=BC=5,
∴△ACP≌△BCP(SAS);

(3)∵C△APQ=PA+PQ+AQ=PB+PQ+AQ,
∴当B、P、Q三点在同一直线上时,△APQ的周长最小,
设直线PQ的解析式为y=kx+b,把B(-2,-3)、Q(0,6)代入,
b=6
-2k+b=-3

∴y=
9
2
x+6,
联立方程
y=
9
2
x+6
y=-x

x=-
12
11
y=
12
11

∴点P的坐标为(-
12
11
12
11
).
点评:本题主要考查反比例函数的综合题,解答本题的关键是熟练掌握反比例函数的性质以及全等三角形性质等知识,此题难度不大,但是此类型的试题是中考的重点,希望同学们注意.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•江东区模拟)以下四个标志分别表示“绿色食品、回收、节能、节水”,其中属于轴对称图形的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江东区模拟)一个不透明的袋子中放有2个红球,2个白球(红球和白球的形状、材质完全相同),从中任意摸出2个球,恰好是一个红球、一个白球的概率是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江东区模拟)如图,△ABC的角平分线AD交BC于点D,点E、F分别在AB、AC上,且EF∥BC,记∠AEF=α,∠ADC=β,∠ACB的补角∠ACG为γ,则α、β、γ的关系是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江东区模拟)已知:如图,点A(-4,0),B(-1,0),将线段AB平移后得到线段CD,点A的对应点C恰好落在y轴上,且四边形ABDC的面积为9,则四边形ABDC的周长是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江东区模拟)如图,抛物线y=
1
4
x2-m2(m>0)与x轴相交于点A、C,与y轴相交于点P,连结PA、PC,过点A画PC的平行线分别交y轴和抛物线于点B、C1,连结CB并延长交抛物线于点A1,在过点A1画AC1的平行线分别交y轴和抛物线于点B1、C2,连结C1B1并延长交抛物线于点A2,…,依次得到四边形,记四边形AnBnCnBn-1的面积为Sn
(1)求证:四边形ABCP是菱形.
(2)设∠A1B1C1=a,且90°<a<120°,求m的取值范围.
(3)当m=1时,
①填表:
序号 S1 S2 S3 Sn
四边形的面积
②是否存在2个四边形,他们的面积Sp、Sq满足:Sp×Sq=214(p<q)?若存在,求p、q的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案