【题目】随着生活水平的提高,人们对饮水质量的需求越来越高,我市某公司根据市场需求准备销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用48000元购进A型净水器与用36000元购进B型净水器的数量相等.
(1)求每台A型、B型净水器的进价各是多少元?
(2)该公司计划购进A、B两种型号的净水器共400台进行销售,其中A型的台数不超过B型的台数,A型净水器每台售价1500元,B型净水器每台售价1100元,怎样安排进货才能使售完这400台净水器所获利润最大?最大利润是多少元?
【答案】(1)每台A型净水器的进价为1200元,每台B型净水器的进价为900元;(2)购进200台A型净水器,200台B型净水器,可使售完这400台净水器所获利润最大,最大利润是100000元.
【解析】
(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,根据数量=总价÷单价结合用48000元购进A型净水器与用36000元购进B型净水器的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设最大利润是W元,由总利润=单台利润×进货数量,即可得出W关于x的函数关系式,由A型的台数不超过B型的台数,可得出关于x的一元一次不等式,解之即可得出x的取值范围,再利用一次函数的性质即可解决最值问题.
(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:
解得:x=900.
经检验,x=900是原方程的解,且符合题意,∴x+300=1200.
答:每台A型净水器的进价为1200元,每台B型净水器的进价为900元.
(2)设最大利润是W元.
∵购进x台A型净水器,∴购进(400﹣x)台B型净水器,依题意,得:
W=(1500﹣1200)x+(1100﹣900)(400﹣x)=100x+80000.
∵A型的台数不超过B型的台数,∴x≤400﹣x,解得:x≤200.
∵100>0,∴W随x值的增大而增大,∴当x=200时,W取得最大值,最大值为100000元.
答:购进200台A型净水器,200台B型净水器,可使售完这400台净水器所获利润最大,最大利润是100000元.
科目:初中数学 来源: 题型:
【题目】(10分)某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.
(1)今年三月份甲种电脑每台售价多少元?
(2)为了增加收入,电脑公司决定再经销乙种型号电脑,已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?
(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金元,要使(2)中所有方案获利相同,值应是多少?此时,哪种方案对公司更有利?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,AB=1,点F是对角线AC延长线上一点,以BC、CF为邻边作菱形BEFC,连接DE,则DE的长是( ).
A. B. C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(0,﹣1).
(1)写出A、B两点的坐标
(2)经过平移,△ABC的顶点A移到了点A1,画出平移后的△A1B1C1;若△ABC内有一点P(a,b),直接写出按(2)的平移变换后得到对应点P1的坐标.
(3)画出△ABC绕点C旋转180°后得到的△A2B2C2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,AC是弦,直线EF经过点C,AD⊥EF于点D,∠DAC=∠BAC.
(1)求证:EF是⊙O的切线;
(2)求证:AC2=AD·AB;
(3)若⊙O的半径为2,∠ACD=30°,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1个单位长度的小正方形组成的网格中,△ABC的顶点A、B、C在小正方形的顶点上,将△ABC向下平移4个单位、再向右平移3个单位得到△A1B1C1,然后将△A1B1C1绕点A1顺时针旋转90°得到△A1B2C2.
(1)在网格中画出△A1B1C1和△A1B2C2;
(2)计算线段AC从开始变换到A1 C2的过程中扫过区域的面积(重叠部分不重复计算)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系O中,正方形A1B1C1O、A2B2C2B1、A3B3C3B2,…, 按图所示的方式放置.点A1、A2、A3,…和点B1、B2、B3,…分别在直线和轴上.已知C1(1,-1),C2(, ),则点A3的坐标是________________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数y=的图象在第一象限交于点A(4,2),与y轴的负半轴交于点B,且OB=6.
(1)求函数y=和y=kx+b的解析式;
(2)已知直线AB与x轴相交于点C,在第一象限内,求反比例函数y=的图象上一点P,使得S△POC=9.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com