精英家教网 > 初中数学 > 题目详情
13.如图,在菱形ABCD中,∠A=60°,AD=8,F是AB的中点.过点F作FE⊥AD,垂足为E.将△AEF沿点A到点B的方向平移,得到△A'E'F'.设 P、P'分别是 EF、E'F'的中点,当点A'与点B重合时,四边形PP'CD的面积为(  )
A.28$\sqrt{3}$B.24$\sqrt{3}$C.32$\sqrt{3}$D.32$\sqrt{3}$-8

分析 如图,连接BD,DF,DF交PP′于H.首先证明四边形PP′CD是平行四边形,再证明DF⊥PP′,求出DH即可解决问题.

解答 解:如图,连接BD,DF,DF交PP′于H.

由题意PP′=AA′=AB=CD,PP′∥AA′∥CD,
∴四边形PP′CD是平行四边形,
∵四边形ABCD是菱形,∠A=60°,
∴△ABD是等边三角形,
∵AF=FB,
∴DF⊥AB,DF⊥PP′,
在Rt△AEF中,∵∠AEF=90°,∠A=60°,AF=4,
∴AE=2,EF=2$\sqrt{3}$,
∴PE=PF=$\sqrt{3}$,
在Rt△PHF中,∵∠FPH=30°,PF=$\sqrt{3}$,
∴HF=$\frac{1}{2}$PF=$\frac{\sqrt{3}}{2}$,
∵DF=4$\sqrt{3}$,
∴DH=4$\sqrt{3}$-$\frac{\sqrt{3}}{2}$=$\frac{7\sqrt{3}}{2}$,
∴平行四边形PP′CD的面积=$\frac{7\sqrt{3}}{2}$×8=28$\sqrt{3}$.
故选A.

点评 本题考查菱形的性质、平行四边形的判定和性质、等边三角形的判定和性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考选择题中的压轴题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

3.阅读材料:
在平面直角坐标系xOy中,点P(x0,y0)到直线Ax+By+C=0的距离公式为:d=$\frac{{|A{x_0}+B{y_0}+C|}}{{\sqrt{{A^2}+{B^2}}}}$.
例如:求点P0(0,0)到直线4x+3y-3=0的距离.
解:由直线4x+3y-3=0知,A=4,B=3,C=-3,
∴点P0(0,0)到直线4x+3y-3=0的距离为d=$\frac{|4×0+3×0-3|}{{\sqrt{{4^2}+{3^2}}}}$=$\frac{3}{5}$.
根据以上材料,解决下列问题:
问题1:点P1(3,4)到直线y=-$\frac{3}{4}$x+$\frac{5}{4}$的距离为4;
问题2:已知:⊙C是以点C(2,1)为圆心,1为半径的圆,⊙C与直线y=-$\frac{3}{4}$x+b相切,求实数b的值;
问题3:如图,设点P为问题2中⊙C上的任意一点,点A,B为直线3x+4y+5=0上的两点,且AB=2,请求出S△ABP的最大值和最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.小强为测量一路灯杆AB的高度,在灯光下,小强在C处的影长为3米,沿BC方向行走了5米到E处,此时小强的影长为5米,若小强身高为1.7米,求路灯杆AB的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为(  )
A.20B.24C.28D.30

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.甘肃省省府兰州,又名金城,在金城,黄河母亲河通过自身文化的演绎,衍生和流传了独特的“金城八宝”美食,“金城八宝”美食中甜品类有:味甜汤糊“灰豆子”、醇香软糯“甜胚子”、生津润肺“热冬果”、香甜什锦“八宝百合”;其他类有:青白红绿“牛肉面”、酸辣清凉“酿皮子”、清爽溜滑“浆水面”、香醇肥美“手抓羊肉”,李华和王涛同时去品尝美食,李华准备在“甜胚子、牛肉面、酿皮子、手抓羊肉”这四种美食中选择一种,王涛准备在“八宝百合、灰豆子、热冬果、浆水面”这四种美食中选择一种.(甜胚子、牛肉面、酿皮子、手抓羊肉分别记为A,B,C,D,八宝百合、灰豆子、热冬果、浆水面分别记为E,F,G,H)
(1)用树状图或表格的方法表示李华和王涛同学选择美食的所有可能结果;
(2)求李华和王涛同时选择的美食都是甜品类的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.解不等式组:$\left\{\begin{array}{l}x+1≥4\\ 2({x-1})>3x-6\end{array}\right.$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.如图,二次函数y=x2+bx+c的图象与x轴交于 A、B两点,与y轴交于点C,OB=OC.点D在函数图象上,CD∥x轴,且CD=2,直线l是抛物线的对称轴,E是抛物线的顶点.
(1)求b、c的值;
(2)如图①,连接BE,线段OC上的点F关于直线l的对称点F'恰好在线段BE上,求点F的坐标;
(3)如图②,动点P在线段OB上,过点P作x轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN与△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.在一个不透明的盒子里装着除颜色外完全相同的黑、白两种颜色的小球共40个,程程做摸球实验,她将盒子里面的小球搅匀后从中随机摸出一个小球,记下颜色后放回,不断重复上述过程,多次实验后,得到表中的数据,则盒子里的白球最可能有(  )
摸球的次数n10020030050080010003000
摸到白球的次数m621221793024815991810
A.30个B.28个C.24个D.16个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

4.下列各式表示正确的是(  )
A.$\sqrt{25}=±5$B.$±\sqrt{25}=5$C.$±\sqrt{{{(-5)}^2}}=-5$D.$±\sqrt{25}=±5$

查看答案和解析>>

同步练习册答案