【题目】如图1,抛物线y=ax2-11ax+24a(a<0)与x轴交于B、C两点(点B在点C的左侧),抛物线上另有一点A在第一象限内,且∠BAC=90°.
(1)求线段OC的长和点B的坐标;
(2)连接OA,将△OAC沿x轴翻折后得△ODC,当四边形OACD是菱形时,求此时抛物线的解析式;
(3)如图2,折垂直于x轴的直线l:x=n与(2)中所求的抛物线交于点M,与CD交于点N,若直线l沿x轴方向左右平移,且交点M始终位于抛物线上A、C两点之间时,试探究:当n为何值时,四边形AMCN的面积取得最大值,并求这个最大值;
(4)在(3)的条件下,当取得最大值时,四边形ADNM是否为平行四边形?直接回答 (是或不是).如果不是,请直接写出此时的点M的坐标.
【答案】(1)OC=8,B点坐标为(3,0);(2)抛物线的解析式为y=-x2+x-12;(3)最大值为9;(4)不,M点的坐标为(5,3).
【解析】
试题分析:(1)根据二次函数与x轴交点坐标求法,解一元二次方程即可得出;
(2)利用菱形性质得出AD⊥OC,进而得出△ACE∽△BAE,即可得出A点坐标,进而求出二次函数解析式;
(3)首先求出过C、D两点的坐标的直线CD的解析式,进而利用S四边形AMCN=S△AMN+S△CMN求出即可;
(4)由条件可求得AD和MN,此时AD≠MN,可判定四边形ADNM不是平行四边形,由(3)容易求得M的坐标.
试题解析:(1)∵抛物线y=ax2-11ax+24a (a<0)与x轴交于B、C两点(点B在点C的左侧),
∴令y=0可得0=ax2-11ax+24a,解得x1=3,x2=8,
∴OC=8,B点坐标为(3,0);
(2)如图1,连接AD,交OC于点E,
∵四边形OACD是菱形,
∴AD⊥OC,OE=EC=OC=×8=4,
∴BE=4-3=1,
又∵∠BAC=90°,
∴△ACE∽△BAE,
∴,
∴AE2=BECE=1×4,
∴AE=2,
∴点A的坐标为(4,2),
把点A的坐标(4,2)代入抛物线y=ax2-11ax+24a,得a=-,
∴抛物线的解析式为y=-x2+x-12;
(3)如图2,连接AD,交OC于点E,
∵直线x=n与抛物线交于点M,
∴点M的坐标为(n,-n2+n-12),
由(2)知,点D的坐标为(4,-2),
设直线CD的解析式为y=kx+b,
把C、D两点坐标代入可得,解得,
∴直线CD的解析式为y=x-4,
∴点N的坐标为(n,n-4),
∴MN=(-n2+n-12)-(n-4)=-n2+5n-8,
∴S四边形AMCN=S△AMN+S△CMN=MNCE=(-n2+5n-8)×4=-(n-5)2+9,
∴当n=5时,四边形AMCN的面积有最大值,最大值为9;
(4)由(3)可知n=5,且MN=9,
∵A(4,2),D(4,-2),
∴AD=4≠MN,
∴四边形ADNM不是平行四边形,
当n=5时,代入y=-n2+n-12可求得y=3,
∴此时M点的坐标为(5,3).
科目:初中数学 来源: 题型:
【题目】如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则的值为( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AE平分∠BAD,交BC于点E,BF平分∠ABC,交AD于点F,AE与BF交于点P,连接EF,PD.
(1)求证:四边形ABEF是菱形;
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下列运算:①x2+x4=x6 ②2x+3y=5xy ③x6÷x3=x3 ④(x3)2=x6,其中正确的有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】感知:如图①,在等边三角形ABC中,点D、E分别在边AC、AB上,若AE=CD,易知△ACE≌△CBD.
探究:若图①中的点D、E分别在边AC、BA的延长线上时,如图②,△ACE与△CBD是否仍然全等?如果全等,请证明:如果不全等,请说明理由.
应用:若图②中的等边三角形ABC为等腰三角形,且AC=BC,点O是AC边的垂直平分线与BC的交点,点D、E分别在AC、OA的延长线上,如图③,若AE=CD,∠ACB=α,∠ADB=β,则∠ACE的大小为 (用含α和β的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com