精英家教网 > 初中数学 > 题目详情

【题目】如图1,在矩形ABCD中,AC为对角线,延长CD至点E使CE=CA,连接AE。F为AB上一点,且BF=DE,连接FC.

(1)若DE=1,CF=2,求CD的长。

(2)如图2,点G为线段AE的中点,连接BG交AC于H,若∠BHC+∠ABG=600,求证:AF+CE=AC.

【答案】(1)3;(2)见解析.

【解析】分析:(1)先证明△ADE≌△CBF,可得AE=CF= ,设CD=x,则CE=AC=x+1 ,在Rt△ACD中根据勾股定理列方程求解;

(2)延长BGCD的延长线于点M先证明ABGEMG从而可得CE+AF= 2CD,由等腰三角形的性质和三角形外角的性质可求M=∠MCG=∠ACG=∠ABG=15°,从而ACD=30,cos∠ACD=,进而可证明结论.

详解:(1)解:矩形ABCD ,

AD=BC,∠ADC=∠ABC=90 .

∠ADE+∠ADC=180

∠ADC=90

∴∠ADC=∠ABC .

∵BF=DE ,

△ADE≌△CBF ,

AE=CF=

在Rt△ABC中,

AD=

设CD=x,则CE=AC=x+1 ,

解得:

即:

(2)证明:延长BG交CD的延长线于点M

易证△ABG≌EMG,

GM=GB,AB=CD,∠ABG=∠M,

又BF=ED,

∴AF=ME.

∴CE+AF=CE+ME=2CD,

连接CG, 在Rt△MCB,

CG=MG,

∠M=∠MCG.

又CA=CE,且点G是AE的中点,

∠MCG=∠ACG,

又∠BHC=∠M+∠MCG+∠ACG, ∠BHC+∠ABG=60,

∴∠M=∠MCG=∠ACG=∠ABG=15

ACD=30

∵cos∠ACD=,

,

∴AF+CE=AC.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,在RtABC中,∠A=90°,AB=AC,点DE分别在边ABAC上,AD=AE,连接DC,点MPN分别为DEDCBC的中点.

(1)观察猜想

1中,线段PMPN的数量关系是 ,位置关系是

(2)探究证明

ADE绕点A逆时针方向旋转到图2的位置,连接MNBDCE,判断PMN的形状,并说明理由;

(3)拓展延伸

ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出PMN面积的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形OABC中,OA=5,AB=4,点D为边AB上一点,将BCD沿直线CD折叠,使点B恰好落在OA边上的点E处,分别以OC,OA所在的直线为x轴,y轴建立平面直角坐标系.

(1)求点E坐标及经过O,D,C三点的抛物线的解析式;

(2)一动点P从点C出发,沿CB以每秒2个单位长的速度向点B运动,同时动点Q从E点出发,沿EC以每秒1个单位长的速度向点C运动,当点P到达点B时,两点同时停止运动.设运动时间为t秒,当t为何值时,DP=DQ;

(3)若点N在(2)中的抛物线的对称轴上,点M在抛物线上,是否存在这样的点M与点N,使得以M,N,C,E为顶点的四边形是平行四边形?若存在,请求出M点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠B=C,FDBC,DEAB,AFD=158°,求∠EDF的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,ABC,AB=AC,BC=BD,AD=DE=EB,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是⊙O的直径,弦CDABH,过CD延长线上一点E作⊙O的切线交AB的延长线于F,切点为G,连接AGCDK

1)如图1,求证:KE=GE

2)如图2,连接CABG,若∠FGB=ACH,求证:CAFE

3)如图3,在(2)的条件下,连接CGAB于点N,若sinE=AK=,求CN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,∠C=90°AD平分∠BACBC于点DDEAB于点E,则下列结论:①AD平分∠CDE;②∠BAC=BDE;③DE平分∠ADB;④若AC=4BE,则SABC=8SBDE其中正确的有(

A. 1

B. 2

C. 3

D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示, ABC是直角三角形,∠A=90°D是斜边BC的中点,EF分别是ABAC边上的动点,DEDF

(1)如图(1),连接AD,若AB=AC=17CF=5,求线段EF的长.

(2)如图(2),若AB≠AC,写出线段EF与线段BECF之间的等量关系,并写出证明过程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,是由27个相同的小立方块搭成的几何体,它的三个视图是3×3的正方形,若拿掉若干个小立方块(几何体不倒掉),其三个视图仍都为3×3的正方形,则最多能拿掉小立方块的个数为(  )

A. 10 B. 12 C. 15 D. 18

查看答案和解析>>

同步练习册答案