【题目】AB∥CD,C在 D的右侧,BE平分∠ABC,DE平分∠ADC,BE、DE所在的直线交于点 E.∠ADC=70°.
(1)求∠EDC 的度数;
(2)若∠ABC=30°,求∠BED 的度数;
(3)将线段 BC沿 DC方向移动,使得点 B在点 A的右侧,其他条件不变,若∠ABC=n°,请直接写出∠BED 的度数(用含 n的代数式表示).
科目:初中数学 来源: 题型:
【题目】某文具商店销售功能相同的A、B两种品牌的计算器,购买2个A品牌和3个B品牌的计算器共需156元;购买3个A品牌和1个B品牌的计算器共需122元.
(1)求这两种品牌计算器的单价;
(2)学校开学前夕,该商店对这两种计算器开展了促销活动,具体办法如下:A品牌计算器按原价的八折销售,B品牌计算器超出5个的部分按原价的七折销售,设购买x个A品牌的计算器需要y1元,购买x(x>5)个B品牌的计算器需要y2元,分别求出y1、y2关于x的函数关系式;
(3)当需要购买50个计算器时,买哪种品牌的计算器更合算?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,以△ABC的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论::①△EBF≌△DFC;②四边形AEFD为平行四边形;③当AB=AC,∠BAC=120°时,四边形AEFD是正方形.其中正确的结论是 . (请写出正确结论的序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC和△DEF中,将△DEF按要求摆放,使得∠D的两条边分别经过点B和点C.
(1)当将△DEF如图1摆放时,若∠A=50°,∠E+∠F=100°,则∠D= ;∠ABD+∠ACD= .
(2)当将△DEF如图2摆放时,∠A=m°,∠E+∠F=n°,请求出∠ABD+∠ACD的度数(用含m、n的代数式表示).
(3)能否将△DEF摆放到某个位置,使得BD、CD同时平分∠ABC和∠ACB.若能,求出∠A、∠E、∠F满足的关系?若不能,请说明理由?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校为了了解九年级女生仰卧起坐训练情况,课外活动时间随机抽取10名女生测试,成绩如下表所示,那么这10名女生测试成绩的众数与中位数依次是( )
女生编号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
成绩/个 | 48 | 49 | 52 | 47 | 51 | 53 | 52 | 49 | 51 | 49 |
A.52,51
B.51,51
C.49,49
D.49,50
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直角坐标系中,的顶点都在网格点上,其中,点坐标为,
(1)写出点、的坐标:(____,____)、(____,____)
(2)将先向左平移个单位长度,再向上平移个单位长度,得到,画出;
(3)写出三个顶点坐标(___,___)、(___,___)、(___,___);
(4)求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点B(6,0)的直线AB与直线OA相交于点A(4,2),动点M沿路线O→A→C运动.
(1)求直线AB的解析式.
(2)求△OAC的面积.
(3)当△OMC的面积是△OAC的面积的时,求出这时点M的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆拥有客房90间,经营中发现:每天入住的客房数y(间)与房价x(元)(180≤x≤300)满足一次函数关系,部分对应值如下表:
x(元) | 200 | 240 | 270 | 300 |
y(间) | 90 | 70 | 55 | 40 |
(1)求y与x之间的函数表达式;
(2)已知每间入住的客房,宾馆每日需支出各种费用100元;每日空置的客房,宾馆每日需支出60元,当房价为多少元时,宾馆当日利润最大?求出最大值.(宾馆当日利润=当日房费收入﹣当日支出)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线AB与直线BC交于B点,∠ABC=n°(n>110),直线EF与直线AB交于点G,与直线BC交于H点,∠AGE=70°,将EF向右平移,在平移的过程中,∠GHC=_______°(用含n的式子表示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com