如图,直线l上有一点P1(2,1),将点P1先向右平移1个单位,再向上平移2个单位得到像点P2,点P2恰好在直线l上.
![]()
![]()
(1)写出点P2的坐标;
(2)求直线l所表示的一次函数的表达式;
(3)若将点P2先向右平移3个单位,再向上平移6个单位得到像点P3.请判断点P3是否在直线l上,并说明理由.
(1)P2(3,3);(2)y=2x﹣3;(3)在.
【解析】
试题分析:本题考查了待定系数法求一次函数解析式,一次函数图象上点的坐标特征以及一次函数图象的几何变换.在平面直角坐标系中,图形的平移与图形上某点的平移相同.平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.(1)根据平移规律来求点P2的坐标;
(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),把点P1(2,1),P2(3,3)代入直线方程,利用方程组来求系数的值;(3)把点(6,9)代入(2)中的函数解析式进行验证即可.
试题解析:(1)P2(3,3).
(2)设直线l所表示的一次函数的表达式为y=kx+b(k≠0),
∵点P1(2,1),P2(3,3)在直线l上, ∴![]()
, 解得![]()
.
∴直线l所表示的一次函数的表达式为y=2x﹣3.
(3)点P3在直线l上.由题意知点P3的坐标为(6,9), ∵2×6﹣3=9,
∴点P3在直线l上.
【难度】一般
科目:初中数学 来源: 题型:
已知2y-3与3x+1成正比例,且x=2时,y=5.
(1)求y与x之间的函数关系式,并指出它是什么函数;
(2)若点(a ,2)在这个函数的图象上,求a.
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,我们给中国象棋棋盘建立一个平面直角坐标系(每个小正方形的边长均为1),根据象棋中“马”走“日”字的规定,若“马”的位置在图中的点P.
(1)写出下一步“马”可能达到的点的坐标 ;
(2)顺次连结(1)中的所有点,得到的图象是 图形(填“中心对称”、“旋转对称”、“轴对称”);
|
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系xOy中,已知正比例函数
与一次函数
的图像交于点A.
![]()
![]()
(1)求点A的坐标;
(2)设
轴上一点P(
,0),过点P作
轴的垂线(垂线位于点A的右侧),分别交
和
的图像于点B、C,连接OC,若BC=
OA,求△OBC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
已知:如图,在矩形ABCD中,AB=10,BC=12,四边形EFGH的三个顶点E、F、H分别在矩形ABCD的边AB、BC、DA上,AE=2.
![]()
(1)如图(1),当四边形EFGH为正方形时,求△GFC的面积.
(2)如图(2),当四边形EFGH为菱形,且BF=a时,求△GFC的面积(用含a的代数式表示).
(3)在(2)的条件下,△GFC的面积能否等于2?请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com