精英家教网 > 初中数学 > 题目详情
△ABC中,∠ABC与∠ACB的平分线交于点I,根据下列条件,求∠BIC的度数.
(1)若∠ABC=60°,∠ACB=70°,则∠BIC=
115
115
°;
(2)若∠ABC+∠ACB=130°,则∠BIC
=115
=115
°;
(3)若∠A=110°,则∠BIC=
145
145
°;
(4)从上述计算中,我们能发现已知∠A,求∠BIC的度数,则∠BIC=
90°-
1
2
∠A
90°-
1
2
∠A
°.
分析:(1)已知∠ABC=60°,∠ACB=70°,则角平分线所成的角度数为其度数的一半.然后根据三角形的内角和为180度求出∠CIB的度数.
(2)已知∠ABC+∠ACB=130°,∠ICB=
1
2
∠ACB,∠IBC=
1
2
,∠ICB+∠IBC=
1
2
(∠ABC+∠ACB),然后根据三角形内角和为180度,求出∠CIB的度数;
(3)∠A=110°即∠ABC+∠ACB=70°,与(2)同理可求得;
(4)对于△ICB:∠ICB=180-(∠ICB+∠IBC),∠ICB+∠IBC=
1
2
(∠ABC+∠ACB);对于△ABC:∠ABC+∠ACB=180-∠A,将其代入上一个等式即可得出结果.
解答:解(1)∠BCI=
1
2
∠ACB=
1
2
×60°=30°,
∠CBI=
1
2
∠ABC=
1
2
×70°=35°,
∴∠BIC=180°-∠BCI-∠CBI=180°-30°-35°=115°;

(2)∠ICB+∠IBC=
1
2
(∠ABC+∠ACB)=65°,∠CIB=180°-65°=115°;

(3)∠A=110°即∠ABC+∠ACB=70°,与(2)同理,可得:∠CIB=145°

(4))∠BIC=180°-(∠ICB+∠IBC)而∠ICB+∠IBC=
1
2
(∠ABC+∠ACB);
∠ABC+∠ACB=180-∠A,
所以∠BIC=180°-
1
2
(180-∠A)=90°+
1
2
∠A.
故答案是:115,=115,145,90°+
1
2
∠A.
点评:本题解题关键是得到∠ICB与∠IBC的和,在求解过程中主要用到定理:三角形的内角和为180°
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

20、问题:已知△ABC中,∠BAC=2∠ACB,点D是△ABC内的一点,且AD=CD,BD=BA.探究∠DBC与∠ABC度数的比值.
请你完成下列探究过程:
先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.
(1)当∠BAC=90°时,依问题中的条件补全右图;
观察图形,AB与AC的数量关系为
相等
;当推出∠DAC=15°时,可进一步推出∠DBC的度数为
15°
;可得到∠DBC与∠ABC度数的比值为
1:3

(2)当∠BAC<90°时,请你画出图形,研究∠DBC与∠ABC度数的比值是否与(1)中的结论相同,写出你的猜想并加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:江苏期中题 题型:解答题

如图,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH:AC=2:3
(1)延长HF交AB于G,求△AHG的面积.
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图).
探究1:在运动中,四边形CDH?H能否为正方形?若能,请求出此时t的值;若不能,请说明理由.
探究2:在运动过程中,△ABC与直角梯形DEFH?重叠部分的面积为y,求y与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:湖南省中考真题 题型:解答题

如图1,在△ABC中,∠C=90°,BC=8,AC=6,另有一直角梯形DEFH(HF∥DE,∠HDE=90°)的底边DE落在CB上,腰DH落在CA上,且DE=4,∠DEF=∠CBA,AH∶AC=2∶3。
(1)延长HF交AB于G,求△AHG的面积;
(2)操作:固定△ABC,将直角梯形DEFH以每秒1个单位的速度沿CB方向向右移动,直到点D与点B 重合时停止,设运动的时间为t秒,运动后的直角梯形为DEFH′(如图2)。
探究1:在运动中,四边形CDH′H能否为正方形?若能,请求出此时t的值;若不能,请说明理由;
探究2:在运动过程中,△ABC与直角梯形DEFH′重叠部分的面积为y,求y与t的函数关系。

查看答案和解析>>

同步练习册答案