【题目】如图,一次函数图象与轴、轴交于点.
(1)判断点是否在该函数的图象上?
(2)求点的坐标;
(3)在直线上是否存在一点,使得的面积为?若存在,求出所有满足点的坐标;若不存在,请说明理由.
【答案】(1)不在该函数图象上;(2)B(0,2),A(-3,0);(3)(1,)或(-1,)
【解析】
(1)将x=-6代入直线AB的解析式,然后根据纵坐标判断即可;
(2)令y=0和x=0即可求出点A,B的坐标;
(3)先设点D的坐标为(a,),从而可得三角形BOD以OB为底边,a的绝对值为高,进而表示出三角形BOD面积,然后根据已知面积求出a的值,即可确定D的坐标.
(1)当x=-6时,,
∴不在该函数图象上;
(2)令x=0,则=2,
∴B(0,2),
令y=0,则0=,
∴x=-3,
∴A(-3,0);
(3)设D坐标为(a,),
∵B(0,2),
∴OB=2
根据题意得:S△BOD=OB·|a|=×2·|a|=|a|,
∵S△BOD=1,
∴|a|=1,
解得:a=1或a=-1,
∴D坐标为(1,)或(-1,).
科目:初中数学 来源: 题型:
【题目】如图,Rt△CEF中,∠C=90°,∠CEF, ∠CFE外角平分线交于点A,过点A分别作直线CE、CF的垂线,B、D为垂足.
(1)求证:四边形ABCD是正方形,
(2)已知AB的长为6,求(BE+6)(DF+6)的值,
(3)借助于上面问题的解题思路,解决下列问题:若三角形PQR中,∠QPR=45°,一条高是PH,长度为6,QH=2,则HR= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解初中阶段女生身高情况,从某中学初二年级120名女生中随意抽出40名同龄女生的身高数据,经过分组整理后的频数分布表及频数分布直方图如图所示:
结合以上信息,回答问题:
(1)a=______,b=______,c=______.
(2)请你补全频数分布直方图.
(3)试估计该年级女同学中身高在160~165cm的同学约有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,.点在上以的速度由点向点运动,同时点在上由点向点运动,它们运动的时间为.
(1)如图①,,,若点的运动速度与点的运动速度相等,当时,与是否全等,请说明理由,并判断此时线段和线段的位置关系;
(2)如图②,将图①中的“,”为改“”,其他条件不变.设点的运动速度为,是否存在实数,使得与全等?若存在,求出相应的、的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某批乒乓球的质量检验结果如下:
抽取的乒乓球数n | 200 | 500 | 1000 | 1500 | 2000 |
优等品频数m | 188 | 471 | 946 | 1426 | 1898 |
优等品频率 | 0.940 | 0.942 | 0.946 | 0.951 | 0.949 |
(1)画出这批乒乓球“优等品”频率的折线统计图;
(2)这批乒乓球“优等品”的概率的估计值是多少?
(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.
①求从袋中摸出一个球是黄球的概率;
②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于, 问至少取出了多少个黑球?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点C,E,F,B在同一直线上,点A,D在BC异侧,AB∥CD,AE=DF,∠A=∠D.
(1)求证:AB=CD;
(2)若AB=CF,∠B=30°,求∠D的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,PB与⊙O相切于点B,连接PA交⊙O于点C,连接BC.
(1)求证:∠BAC=∠CBP;
(2)求证:PB2=PCPA;
(3)当AC=6,CP=3时,求sin∠PAB的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知⊙O 的直径 AB 垂直弦 CD 于点 E,连接 CO 并延长交 AD于点 F,且 CF⊥AD
(1)求证:点 E 是 OB 的中点;
(2)若 AB=12,求 CD 的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com