精英家教网 > 初中数学 > 题目详情

【题目】已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.
(1)求m、n的值
(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.

【答案】
(1)

解:∵对称轴是经过(﹣1,0)且平行于y轴的直线,

∴﹣=﹣1,

∴m=2,

∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),

∴9﹣3m+n=1,得出n=3m﹣8.

∴n=3m﹣8=﹣2


(2)

解:∵m=2,n=﹣2,

∴二次函数为y=x2+2x﹣2,

作PC⊥x轴于C,BD⊥x轴于D,则PC∥BD,

=

∵P(﹣3,1),

∴PC=1,

∵PA:PB=1:5,

=

∴BD=6,

∴B的纵坐标为6,

代入二次函数为y=x2+2x﹣2得,6=x2+2x﹣2,

解得x1=2,x2=﹣4(舍去),

∴B(2,6),

,解得

∴一次函数的表达式为y=x+4.


【解析】(1)利用对称轴公式求得m,把P(﹣3,1)代入二次函数y=x2+mx+n得出n=3m﹣8,进而就可求得n;
(2)根据(1)得出二次函数的解析式,根据已知条件,利用平行线分线段成比例定理求得B的纵坐标,代入二次函数的解析式中求得B的坐标,然后利用待定系数法就可求得一次函数的表达式.
【考点精析】掌握确定一次函数的表达式是解答本题的根本,需要知道确定一个一次函数,需要确定一次函数定义式y=kx+b(k不等于0)中的常数k和b.解这类问题的一般方法是待定系数法.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=kx+b的图象与反比例函数y= 的图象相交于点A(﹣2,1),点B(1,n).
(1)求此一次函数和反比例函数的解析式;
(2)请直接写出满足不等式kx+b﹣ <0的解集;
(3)在平面直角坐标系的第二象限内边长为1的正方形EFDG的边均平行于坐标轴,若点E(﹣a,a),如图,当曲线y= (x<0)与此正方形的边有交点时,求a的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一海伦位于灯塔P的西南方向,距离灯塔40海里的A处,它沿正东方向航行一段时间后,到达位于灯塔P的南偏东60°方向上的B处,求航程AB的值(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是⊙O的内接四边形,BC的延长线与AD的延长线交于点E,且DC=DE.

(1)求证:∠A=∠AEB
(2)连接OE,交CD于点F,OE⊥CD,求证:△ABE是等边三角形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,动点M从点A出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动,过线段MN的中点G作边AB的垂线,垂足为点G,交△ABC的另一边于点P,连接PM,PN,当点N运动到点A时,M,N两点同时停止运动,设运动时间为t秒.

(1)当t=秒时,动点M,N相遇
(2)设△PMN的面积为S,求S与t之间的函数关系式
(3)取线段PM的中点K,连接KA,KC,在整个运动过程中,△KAC的面积是否变化?若变化,直接写出它的最大值和最小值;若不变化,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,AD=CD,∠1=70°,则∠2的度数是(  )

A.20°
B.35°
C.40°
D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A(3,5)关于原点O的对称点为点C,分别过点A,C作y轴的平行线,与反比例函数y=(0<k<15)的图象交于点B,D,连接AD,BC,AD与x轴交于点E(﹣2,0).

(1)求k的值;
(2)直接写出阴影部分面积之和.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校举行一次体育测试,从所有参加测试的中学生中随机的抽取10名学生的成绩,制作出如下统计表和条形图,请解答下列问题:

编号

成绩

等级

编号

成绩

等级

95

A

76

B

78

B

85

A

72

C

82

B

79

B

77

B

92

A

69

C


(1)孔明同学这次测试的成绩是87分,则他的成绩等级是 等;
(2)请将条形统计图补充完整;
(3)已知该校所有参加这次测试的学生中,有60名学生成绩是A等,请根据以上抽样结果,估计该校参加这次测试的学生总人数是多少人.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了进一步了解义务教育阶段学生的体质健康状况,教育部对我市某中学九年级的部分学生进行了体质抽测,体质抽测的结果分为四个等级:优秀、良好、合格、不合格,根据调查结果绘制了下列两幅不完整的统计图,请你根据统计图提供的信息回答以下问题:

(1)在扇形统计图中,“合格”的百分比为 ;
(2)本次体质抽测中,抽测结果为“不合格”等级的学生有
(3)若该校九年级有400名学生,估计该校九年级体质为“不合格”等级的学生约有 人.

查看答案和解析>>

同步练习册答案