精英家教网 > 初中数学 > 题目详情

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,动点M从点A出发,以每秒1个单位长度的速度沿AB向点B匀速运动;同时,动点N从点B出发,以每秒3个单位长度的速度沿BA向点A匀速运动,过线段MN的中点G作边AB的垂线,垂足为点G,交△ABC的另一边于点P,连接PM,PN,当点N运动到点A时,M,N两点同时停止运动,设运动时间为t秒.

(1)当t=秒时,动点M,N相遇
(2)设△PMN的面积为S,求S与t之间的函数关系式
(3)取线段PM的中点K,连接KA,KC,在整个运动过程中,△KAC的面积是否变化?若变化,直接写出它的最大值和最小值;若不变化,请说明理由.

【答案】
(1)2.5
(2)

解:过点C作CH⊥AB于H,

由SABC=ACBC=ABCH得,CH==4.8,

∴AH==3.6,BH=10﹣3.6=6.4.

∵当点N运动到点A时,M,N两点同时停止运动,∴0≤t≤

当0≤t<2.5时,点M在点N的左边,如图1、图2,

MN=AB﹣AM﹣BN=10﹣t﹣3t=10﹣4t.

∵点G是MN的中点,∴MG=MN=5﹣2t,

∴AG=AM+MG=t+5﹣2t=5﹣t,

∴BG=10﹣(5﹣t)=t+5.

当点P与点C重合时,点G与点H重合,

则有5﹣t=3.6,解得t=1.4.

当2.5<t≤时,点M在点N右边,如图3,

∵MN=AM﹣AN=AM﹣(AB﹣BN)=t﹣(10﹣3t)=4t﹣10,

∴NG=MN=2t﹣5,

∴AG=AN+NG=10﹣3t+2t﹣5=5﹣t.

综上所述:①当0≤t≤1.4时,点M在点N的左边,点P在BC上,如图1,

此时MN=10﹣4t,BG=t+5,PG=BGtanB=(t+5)=t+

∴S=MNPG=(10﹣4t)(t+)=﹣t2t+

②当1.4<t<2.5时,点M在点N的左边,点P在AC上,如图2,

此时MN=10﹣4t,AG=5﹣t,PG=AGtanA=(5﹣t)=t,

∴S=MNPG=(10﹣4t)(t)=t2﹣20t+

③当2.5<t≤时,点M在点N的右边,点P在AC上,如图3,

此时MN=4t﹣10,AG=5﹣t,PG=AGtanA=(5﹣t)=t,

∴S=MNPG=(4t﹣10)(t)=﹣t2+20t﹣

∴S与t之间的函数关系式为S=


(3)

解:在整个运动过程中,△KAC的面积变化,最大值为4,最小值为

提示:过点K作KD⊥AC于D,过点M作ME⊥AC于E.

①当0≤t≤1.4时,点P在BC上,如图4,

此时AM=t,BG=t+5,

∴EM=AMsin∠EAM=t=t,BP===t+

∴CP=CB﹣BP=8﹣(t+)=﹣t+

∵EM⊥AC,KD⊥AC,PC⊥AC,

∴EM∥DK∥CP.

∵K为PM的中点,∴D为EC中点,

∴DK=(CP+EM)=(﹣t++t)=﹣t+

∴SKAC=ACDK=×6×(﹣t+)=﹣t+

∵﹣<0,∴SKAC随着t的增大而减小

∴当t=0时,SKAC取到最大值,最大值为,

当t=1.4时,SKAC取到最小值,最小值为

②当1.4<t≤时,点P在AC上,如图5、图6,

同理可得:DK为△PEM的中位线,EM=t,

∴DK=EM=t,

∴SKAC=ACDK=×6×t=t.

>0,∴SKAC随着t的增大而增大,

∴当t=1.4时,SKAC取到最小值,最小值为

当t=时,SKAC取到最大值,最大值为×=4

综上所述:△KAC的面积的最大值为4,最小值为


【解析】(1)根据勾股定理可得AB=10,若动点M、N相遇,则有t+3t=10,即可求出t的值;
(2)由于“点P在BC上”与“点P在点AC上”及“点M在点N的左边”与“点M在点N的右边”对应的MN、PG的表达式不同,S与t之间的函数关系式也就不同,因此需分情况讨论.只需先考虑临界位置(点P与点C重合,点M与点N重合、点N与点A重合)所对应的t的值,然后分三种情况(①0≤t≤1.4,②1.4<t<2.5,③2.5<t≤)讨论,用t的代数式表示出MN和PG,就可解决问题;
(3)过点K作KD⊥AC于D,过点M作ME⊥AC于E,由于AC已知,要求△KAC的面积的最值,只需用t的代数式表示出DK,然后利用一次函数的增减性就可解决问题.
【考点精析】解答此题的关键在于理解平行线分线段成比例的相关知识,掌握三条平行线截两条直线,所得的对应线段成比例,以及对相似三角形的判定与性质的理解,了解相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,长方形ABCD中,M为CD中点,分别以点B、M为圆心,以BC长、MC长为半径画弧,两弧相交于点P.若∠PMC=110°,则∠BPC的度数为(
A.35°
B.45°
C.55°
D.65°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在20km越野赛中,甲乙两选手的行程y(单位:km)随时间x(单位:h)变化的图象如图所示,根据图中提供的信息,有下列说法:①两人相遇前,甲的速度小于乙的速度;②出发后1小时,两人行程均为10km;③出发后1.5小时,甲的行程比乙多3km;④甲比乙先到达终点.其中正确的有(  )

A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解2014年某地区10万名大、中、小学生50米跑成绩情况,教育部门从这三类学生群体中各抽取了10%的学生进行检测,整理样本数据,并结合2010年抽样结果,得到下列统计图:

(1)本次检测抽取了大、中、小学生共 名,其中小学生 名.
(2)根据抽样的结果,估计2014年该地区10万名大、中、小学生中,50米跑成绩合格的中学生人数为 名.
(3)比较2010年与2014年抽样学生50米跑成绩合格率情况,写出一条正确的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】课题小组从某市20000名九年级男生中,随机抽取了1000名进行50米跑测试,并根据测试结果绘制了如下尚不完整的统计图表.

等级

人数/名

优秀

a

良好

b

及格

150

不及格

50

解答下列问题:
(1)a= ,b=
(2)补全条形统计图

(3)试估计这20000名九年级男生中50米跑达到良好和优秀等级的总人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.
(1)求m、n的值
(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲口袋中装有2个相同的小球,它们分别写有数字1和2;乙口袋中装有3个相同的小球,它们分别写有数字3,4和5,从两个口袋中各随机取出1个小球.用画树状图或列表的方法,求取出的2个小球上的数字之和为6的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两台机器共同加工一批零件,在加工过程中两台机器均改变了一次工作效率.从工作开始到加工完这批零件两台机器恰好同时工作6小时.甲、乙两台机器各自加工的零件个数y(个)与加工时间x(时)之间的函数图象分别为折线OA﹣AB与折线OC﹣CD.如图所示.

(1)求甲机器改变工作效率前每小时加工零件的个数.
(2)求乙机器改变工作效率后y与x之间的函数关系式.
(3)求这批零件的总个数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ACB=90°,AC=1,AB=2

(1)求作⊙O,使它过点A、B、C(要求:尺规作图,保留作图痕迹,不写作法)
(2)在(1)所作的圆中,求出劣弧的长l

查看答案和解析>>

同步练习册答案